
Adaptable Multimodal Interfaces

in Pervasive Environments

Pierre-Alain Avouac, Philippe Lalanda and Laurence Nigay

Université Joseph Fourier Grenoble 1

Laboratoire d’Informatique de Grenoble, LIG

Grenoble, France

{pierre-alain.avouac, philippe.lalanda, laurence.nigay}@imag.fr

Abstract—In the context of pervasive environments, multimodal

interaction plays a pivotal role because multimodality provides

flexibility and naturalness for interaction. The challenge of

multimodal interfaces in pervasive environments is then to build

reliable and autonomic processing systems able to analyze and

understand multiple interaction modalities and reconfigure itself

in real-time. Addressing this issue, we have developed an

autonomic framework called DynaMo (Dynamic multiMOdality)

for the development and runtime management of multimodal

interaction in pervasive environments. DynaMo is composed by a

specification language dedicated to the multimodality domain

and a runtime machine that instantiates these specifications. In

this paper, we present the overall architecture of our solution

DynaMo that is based on partial interaction models, and how

these models are completed at runtime to build multimodal

interfaces adapted to the local execution environment.

Keywords-pervasive computing; multimodal interaction;

autonomic computing

I. INTRODUCTION

Pervasive computing is slowly changing the way we
interact with computers [12, 15] and is gaining more and more
attention from industrial and academic sectors. This computing
domain relies on the use of smart communication-enabled
devices integrated in our environment in order to provide
humans with added-value services. Research is particularly
active in domains such as smart homes or intelligent buildings
where societal needs must be addressed. The purpose here is to
assist us in our daily activities in a natural and non-intrusive
fashion. For instance, monitoring devices can be used to allow
disabled or elder people to stay safely in their home longer.
Similarly, intelligent devices can be used to make our working
environment more dedicated and efficient. For instance,
rendering devices can help visitors to follow the right
directions in an unknown building.

 Pervasive devices are today becoming smaller and smarter.
They fade away in the environment and appear as potential
services rather than concrete hardware devices. They have the
ability to communicate with each other, perform context-based
cognitive and physical actions, and manage themselves in order
to stay operational. Weiser’s exciting vision [15] where
myriads of devices team up transparently to provide human
beings with services of all sorts seem now very reasonable! In
this context of pervasive environments, input multimodal

interaction plays a pivotal role because it provides flexibility
and naturalness for interaction [10]:

 Multimodality allows the users to use a variety of
devices to interact with an application, depending on
the context (e.g. devices availability, reliability, user’s
mood, etc.).

 Multimodality provides a natural way to interact with
device-stuffed pervasive environments by means of
various interaction modalities including gestures or
direct manipulation.

In [9], we define an input interaction modality as the
coupling of a device d with an interaction language l: (d, l). A
physical device is an artifact manipulated by the user that
acquires (input device) information. An interaction language
defines a set of well-formed expressions that convey meaning.
The interaction language corresponds to the abstraction
function that starts from raw data acquired from a device from
which a meaningful task is defined that will be executed by the
application. This abstraction function implies a sequence of
operations, including multimodal fusion, syntactic and
semantic alignments.

A single interaction device can be involved in several
modalities. For instance a wiimote device can be used to define
a gesture modality m1=(wiimote, gesture recognition) or a
direct manipulation way of interacting m2=(wiimote, direct
manipulation). Multimodality therefore does not imply
multiple devices but multiple modalities, a modality being
defined as a couple (d, l). On the one hand, several modalities
can be defined for performing a single task. In this case,
multimodality offers the flexibility required in pervasive
environments: different modalities can be used by the user for
performing a given task according to the context. On the other
hand, several modalities can be used in a combined way more
naturally and robustly: a seminal example of combined usage
of modalities is the “put that there” paradigm combining
speech and gesture [3]. In [5], we defined the CARE properties
as a simple way of characterizing and assessing these aspects
of multimodal interaction: the Complementarity, Assignment,
Redundancy, and Equivalence that may occur between the
interaction modalities available in a multimodal user interface.

Based on these definitions of an interaction modality and of
multimodal interaction, we present in this paper the overall
architecture of an autonomic framework, namely DynaMo, for

the development and runtime management of multimodal
interaction in pervasive environments. We then illustrate the
autonomic management of multimodal interaction by
considering a simple scenario. The DynaMo framework
leverages recent advances in model-based engineering and in
service-oriented components [6].

II. MULTIMODALITY IN SERVICE-BASED ENVIRONMENTS

A major problem is that developing multimodal added-
value services through the opportunistic and correct integration
of volatile, heterogeneous elements is still a major challenge in
software engineering. Current techniques can hardly face open
environments where devices and applications appear or
disappear at anytime. For that reason, the emergence of
Service-Oriented Computing (SOC) has brought considerable
expectation in the pervasive field [11]. The very purpose of this
reuse-based approach is to build applications or interactions
through the late composition of independent software elements,
called services. Their capabilities are published at runtime and
are subsequently discovered, chosen and called when needed.
This is achieved within Service-Oriented Architectures (SOA)
providing the supporting mechanisms for services description,
publication, discovery, and invocation. Service orientation has
distinct benefits for pervasive computing. It promotes weak
coupling between consumers and providers, reducing
dependencies among composition units. Late binding improves
adaptability and substitutability favors runtime optimization.
Several SOA implementations exist. For instance, Web
Services (www.w3c.org) represent a solution of choice to
expose software applications, UPnP (www.upnp.org) and
DPWS (docs.oasis-open.org) are commonly used to implement
volatile devices and even 6LoWPAN (www.6lowpan.org)
present some service-like capabilities. Integrating different
SOAs is admittedly complex since they rely on different
description languages, notification mechanisms, invocation
styles, etc. Dynamicity is obviously another challenging point.
Since devices and applications join and leave the network at
unpredictable times, compositions must be contextual and
cannot rely on static orchestrations determined at design time.
A major difficulty is that context-aware compositions must be
resolved by the composite application itself since, in pervasive
environments, it is not conceivable to rely on advanced user
intervention. Finally, as of today’s state-of-the-art, service
composition cannot be based only upon service specifications.
Syntactic compatibility does not ensure semantic compatibility.
In practice, service composition is based on unexpressed
assumptions/rules allowing us to attain the expected results.

As illustrated by Fig. 1, in this context of service-oriented
environments, multimodal interaction is a truly illuminating
case. Indeed multimodal interaction requires us to dynamically
bind service-based interaction devices such as a mobile phone
or a remote controller and service-based applications such as a
game or a media player. Composition is context aware in the
sense that it relies on the available interaction devices and on
the currently running applications. The situation can change
anytime. It is not possible to anticipate all the eventualities at
design time. Multimodal interaction should be designed to
dynamically adapt easily to different computing and interaction
contexts, user profiles and application needs.

Figure 1. Multimodality in service-based environments: linking service-

based devices with service-based applications.

Runtime adaptability has always been a daunting challenge.
It requires us to prepare adaptation points in the code, to define
a language to specify desired adaptations and to dispose of an
adaptable runtime support. Since users are not supposed to play
any kind of administrative role, some level of intelligence is
clearly needed in the code to decide when, how and where to
adapt multimodal interfaces. In addition, interaction
adaptations should remain largely transparent to users. As such,
necessary management operations should require minimum
human intervention, while meeting specific performance and
dependability constraints. However, some level of feedback is
still necessary to be sure of users’ acceptance and
understanding.

Modern approaches tend to encapsulate mediation in a
dedicated software layer. This is good engineering practice
since it provides an isolation layer with a single point of access.
It also reduces the number of connections needed and
facilitates change management. Specific component-based
frameworks have been recently proposed to support the
development of mediation operations for multimodal interfaces
[4, 14]. These approaches bring appropriate separation of
concerns, clearly distinguishing functional aspects like data
fusion and non-functional aspects like communication or
synchronization. The existing frameworks provide a graphical
editor in order to define the sequence of
transformations/operations from data acquired from interaction
devices to tasks supported by the applications. The developer
defines tailored or generic components that are managed by the
framework (i.e. the mediation operations of Fig. 1) while the
designer graphically assembles the components to define the
multimodal interaction. Fig. 2 presents an example of a
graphically specified multimodal interaction using OIDE [13]:
the example involves the combined usage of speech and
gesture for performing a zoom task on a map displayed on an
augmented table.

The existing multimodal frameworks, however, are made
for well-delimited environments where applications to be
controlled and interaction devices to be used are known in
advance. They cannot handle highly dynamic environments
where devices, applications, and the way multimodal
interactions unfold, are rapidly evolving. More dynamic
features are needed both at the design language level and the
runtime execution framework level. We address these issues in
our DynaMo (Dynamic multiModality) framework by adopting
an autonomic approach for managing the multimodal
processing system. Based on partial interaction models, the
DynaMo autonomic manager builds complete multimodal
interaction based on runtime conditions.

Figure 2. Combined usage of speech and gesture for performing a zoom task

on a map displayed on an augmented table: designer assembly for specifying a

zoom task and screenshot of the same assembly in the OIDE (adapted from

[13]).

III. DYNAMO OVERALL ARCHITECTURE

DynaMo is a framework for the development and
autonomic management of multimodal interfaces in service-
based pervasive settings. Autonomic, here, means that
management decisions are taken and realized by the framework
itself. DynaMo relies on three main constituents that are
presented in Fig. 3 and described in detail in [1]:

 A service integration platform: The purpose of this
platform is to provide a flexible, context-aware
execution machine. It is based on iPOJO, a dynamic
service-oriented component framework built on top of
OSGi. The goal of this platform is also to monitor the
environment in order to trace any computing evolution.

 A lightweight component-based mediation framework
allowing the execution of multimodal processing: This
component framework, specific to mediation, provides
abstract lifecycle management facilities and is fully
dynamic (i.e., adaptable at runtime). Low-level
technical aspects like synchronization are hidden away
by the model.

 A model-based autonomic manager whose purpose is
to build and maintain multimodal interaction at
runtime: To make its decisions, the manager uses
partial interaction models defined by interaction
experts and contextual information provided by the
execution machine. It builds multimodal interfaces
through the composition of pre-defined components
conforming to the component model mentioned above.

This architecture clearly separates the management of the
dynamic computing infrastructure and the management of the
multimodal processes. Of course, the mediation-specific
component model plays a central role. It bridges the gap
between high level models specifying interaction possibilities

in abstract terms and low level considerations related to the
execution platform. It puts in place a generative approach
where abstract directives, expressed by the autonomic
manager, are transformed into dynamic OSGi Java code.

Figure 3. DynaMo overall architecture.

The execution machine is a generic platform providing the
necessary runtime support for the execution of dynamic,
context-aware applications. The platform is built on top of
OSGi (www.osgi.org) and iPOJO [6]. OSGi provides the base
mechanisms for modularity and dynamicity. iPOJO is the
Apache service-oriented component model. It facilitates the
development of dynamic component-based applications on top
of OSGI through, in particular, the management of service
dependencies and component lifecycle. This platform also
integrates a specific module, called ROSE, whose purpose is to
constantly reflect the state of the computing environment in the
execution machine. ROSE [2] captures services in the
computing environment and reifies them as iPOJO components
(proxies) in a local registry. ROSE currently handles a number
of protocols, including Web Service, DPWS, UPnP, Zigbee
and Bluetooth. It is available on ObjectWeb
(wiki.chameleon.ow2.org/xwiki/bin/view/Main/Rose). OSGI,
iPOJO, and ROSE are largely used and validated in industrial
applications (Schneider Electric and France Telecom in
particular).

The mediation framework of DynaMo is called Cilia [7]. It
is built on top of iPOJO and takes the form of a domain-
specific component model. Such a model defines a language to
specify components, a language to assemble these components
and an execution framework. In Cilia, components are called
mediators whereas components assemblies are called mediation
chains. They can be both defined in a specification file with an
XML syntax.

The DynaMo autonomic manager creates and adapts the
multimodal interaction, using the dynamic capabilities of the
underlying component model (Cilia). It is driven in its
decisions by high level goals set by the users (or by an initial
administrator). The manager contains the domain-specific
knowledge needed to create and update multimodal processing
chains. To make knowledge explicit, architectural models have
been recently used [8] as a basis for system construction and
update. This approach is limited to domains where reference
architectures can be defined. This is not the case that we
address because of the high dynamism of pervasive systems.
Indeed mediation chains cannot just be instanciated, in
conformance with a reference architecture, because all possible
situations cannot be anticipated at design time (even if using
variability mechanisms). We have defined an alternative
approach where the autonomic manager manipulates a number

of models that have to be composed in order to make up a
complete, accepted interaction means. Two kinds of models
have actually been defined: proxy models and interaction
models. The autonomic manager therefore relies on a general
meta-model that integrates the proxy and interaction meta-
models. Fig. 4 illustrates our model-based manager.

Figure 4. DynaMo model-based autonomic manager.

Proxy models are defined by developers while interaction
models are designed by interaction experts.

Proxy models designed are attached to devices or
applications. They express how « remote » services can be
reified as « internal » services (proxies) in the execution
machine. They contain information used to track the interesting
remote services and to create the corresponding proxies. Proxy
models also specify the discovery protocols to be used, the
available ports and their type. Based on this information, the
autonomic manager can create proxies and bind them to
endpoints of mediation chains. It can also handle simple
syntactic alignments. For instance, when dealing with
interaction devices providing numbers, adaptors are often
necessary to align the provided values and the ones expected
by the applications. If a device provides values in [-180, +180]
and an application needs values in [0, +100], then an adaptor is
automatically added to perform linear transformation.

Interaction models are defined by interaction experts. They
specify an interaction possibility for a proxy model, that is to
say a way for a device or an application to be used in an
interaction. An interaction model only describes a partial
interaction that has to be completed by the autonomic manager.
Interaction models take the form of mediation chains abstractly
expressed. This means that the precise mediation chain to be
used do not have to be specified. It is the purpose of the
autonomic manager to find out the best suited assemblage of
mediators at runtime. Interaction models contain information
about data semantics, data processing (mediator class) and data
path (bindings). Generic mediators specific to multimodal
processing can be directly inserted in the interaction models,
with a given configuration. For instance we defined a generic
mediator for performing fusion that corresponds to the
Complementarity component of Fig. 2.

Semantics-related knowledge is important for the
autonomic manager in order to go beyond type alignments. In
order to allow minimal semantics matching, we have defined a
small ontology shared by all interaction models. Several
interaction classes have been predefined. An interaction class
defines several meanings that make sense together. An
interaction model references one interaction class, so only the
meanings of this class can be attached to data of this model. In
[1], we provide an example that illustrates the interaction class
named MediaPlayer. In the following example we use the
GamePad interaction class.

IV. EXAMPLE

We consider a simple scenario example that illustrates the
appearance of an interaction device and therefore a new
modality. In terms of multimodal interaction, the example
illustrates a case of equivalence of modalities as defined by the
CARE properties for multimodal interaction [5].

The described example corresponds to the following usage
scenario: “Alice is going to play a sudoku game (KSudoku,
http://games.kde.org/game.php?game=ksudoku). A TV remote
controller (BD Remote Controller, or BDRC) and a video game
console controller (Wii Remote, or Wiimote) are present in her
environment. Sitting in the sofa, Alice starts KSudoku in order
to play. She controls the game using the BDRC that is
activated. After a while, she notices the Wiimote near her. She
grabs it, activates it, and plays with one device in each hand.”
In this scenario, Alice does not have to explicitly inform the
system that the application has been started. A mediation chain
is generated as soon as DynaMo is informed that an application
or a device is present.

We now explain what needs to be done for this scenario
running using DynaMo. Three proxy models are defined by
developers, respectively for the KSudoku application and for
the two devices, BDRC and Wiimote. KSudoku is an existing
application that we reused. It is not an ad-hoc application that
we developed for making the scenario run. The application can
be accessed through an inter-process communication, the D-
Bus protocol (http://dbus.freedesktop.org/). A simple proxy
and its model are created by a developer for the application,
without adding any code to the existing application. Indeed
DynaMo already manages the D-Bus discovery. A proxy
requires only a very small amount of code. Each task of the
application has a method, and two lifecycle-related methods
(start and stop) have to be implemented. For simplicity, we
consider here only a subset of the tasks supported by KSudoku.
Four tasks are considered: selectValue that takes an integer (the
number [1, 9] to be added in a cell of the Sudoku), enterValue
that takes an event (a confirmation to enter the specified
number in the current selected cell of the Sudoku), and the two
tasks moveUp and moveDown that take an event (for changing
the selected cell of the Sudoku). We illustrate the proxy model
of KSudoku in Fig 5. The same approach as for the application
is used for the two devices. We defined a simple proxy (access
to the device via the Bluetooth protocol) and a model for each
of the two devices. For simplicity, we only consider some of
the sensors (buttons, accelerometers) of the TV remote
controller (BDRC) and of the Wiimote.

At this stage, without further information, the autonomic
manager will define random bindings between the KSudoku
proxy ports and the ones of the two device proxies. The
autonomic manager will nevertheless verify the data type
compatibility.

Instead of a blind generated mapping between the KSudoku
application and the two devices, interaction models can be
defined to guide the autonomic manager in order to generate
adequate multimodal interaction. An interaction model defines
interaction possibilities for a proxy model. This scenario
illustrates the GamePad interaction class. We defined three
interaction models of Ksudoku, Wiimote and BDRC related to
this interaction class. Fig. 6 shows an excerpt of the
corresponding KSudoku interaction model.

Driven by these interaction models, Fig. 7 shows an excerpt
of the mediation chain generated by the autonomic manager for
the two tasks enterValue and selectValue. Based on the same
mechanism, for the two other tasks moveUp and moveDown,
the mediation chain will specify that:

 The two buttons padDown and padUp of BDRC are
linked to the two tasks moveUp and moveDown,
because they correspond respectively to the meanings
up and down of the GamePad class.

 For the Wiimote, vertical movements with the Wiimote
change the selected cell in the Sudoku because the
interaction model of the Wiimote declares that the
accelerometer coupled with gesture recognition has the
two meanings up and down of the GamePad class.

Figure 5. Excerpt of KSudoku proxy model.

Figure 6. Excerpt of the KSudoku interaction model.

Figure 7. Generated mediation chain for the KSudoku, Wiimote and BDRC

interaction.

V. CONCLUSION

In this paper we presented the overall architecture and an
illustrative example of the autonomic DynaMo framework for
the development and runtime management of multimodal
interfaces in pervasive environments. The DynaMo
architecture makes a clear distinction between the management
of the dynamic computing infrastructure and the one of the
multimodal interaction. This distinction allows us to identify
two distinct roles while using our framework: the developers
that define the proxies and the interaction designer that design
partial interaction models at a high level of abstraction without
considering implementation details. Moreover the underlying
execution machine is robust and validated in industrial
applications. As further work, we plan to perform experimental
evaluation with users.

REFERENCES

[1] P-A. Avouac, P. Lalanda, and L. Nigay, “Service-Oriented Autonomic

Multimodal Interaction in a Pervasive Environment”, Proc. of ICMI’11,
ACM Press, 2011, in press.

[2] J. Bardin, P. Lalanda, and C. Escoffier, “Towards an Automatic

Integration of Heterogeneous Services and Devices”, Proc. of
APSCC’10, IEEE Computer Society, 2010, pp. 171-178

[3] R. A. Bolt, “Put-that-there: voice and gesture at the graphics interface”,
Computer Graphics, vol. 14, issue 3, ACM Press, 1980, pp. 262-270.

[4] J. Bouchet, L. Nigay, and T. Ganille, “ICARE software components for

rapidly developing multimodal interfaces”, Proc. of ICMI '04. ACM
Press, 2004, pp. 251-258.

[5] J. Coutaz, L. Nigay, D. Salber, A. Blandford, J. May, and R.M Young,

“Four easy pieces for assessing the usability of multimodal interaction:

the CARE properties”, Proc. of INTERACT’95, Chapman and Hall,
1995, pp. 115-120.

[6] C. Escoffier, R. S. Hall, and P. Lalanda, “iPOJO: an Extensible Service-

Oriented Component Framework”, Proc. of SCC’07, IEEE Computer
Society, 2007, pp. 474-481.

[7] I. Garcia, I., G. Pedraza, B. Debbabi, P. Lalanda, P., and C. Hamon,

“Towards a service mediation framework for dynamic applications”,
Proc. of APSCC’10, IEEE Computer Society, 2010, pp. 3-10.

[8] D. Garlan, S. Cheng, A. Huang, B. Schmerl, and P. Steenkiste,

“Rainbow: Architecture-Based Self-Adaptation with Reusable

Infrastructure”, Computer, vol. 37, issue 10, IEEE Computer Society,
2004, pp. 46–54.

[9] L. Nigay and J. Coutaz, “A Generic Platform for Addressing the
Multimodal Challenge”, Proc. of CHI’95, ACM Press, 1995, pp. 98-105.

[10] S. Oviatt, “Multimodal interfaces”, Chap. 14 in Human-Computer

Interaction Handbook: Fundamentals, Evolving Technologies, and
Emerging Applications, L. Erlbaum Assoc. Inc., 2007, pp. 286-304.

[11] M. P. Papazoglou and D. Georgakopoulos, “Service-Oriented

Computing: Introduction”, Com. of the ACM, vol. 46, issue 10, ACM
Press, 2003, pp. 24-28.

[12] M. Satyanarayanan, “Pervasive computing: vision and challenges”,

IEEE Personal Communications, vol. 8, IEEE Computer Society,
August 2001, pp. 10-17.

[13] M. Serrano, D. Juras, and L. Nigay, “A Three-dimensional

Characterization Space of Software Components for Rapidly Developing

Multimodal Interfaces”, Proc. of ICMI’08, ACM Press, 2008, pp. 149-
156.

[14] M. Serrano, L. Nigay, J-Y. Lawson, A. Ramsay, R. Murray-Smith, and

S. Denef, “The openinterface framework: a tool for multimodal
interaction”, Proc. of CHI EA '08, pp. 3501-3506.www.oi-project.org.

[15] M. Weiser, “The computer for the 21st century”, Scientific American,
vol. 265, issue 3, NPG, 1991, pp. 66-75.

