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ABSTRACT 
Gestural interfaces allow complex manipulative interactions 
that are hardly manageable using traditional event handlers. 
Indeed, such kind of interaction has longer duration in time 
than that carried out in form-based user interfaces, and 
often it is important to provide users with intermediate 
feedback during the gesture performance. Therefore, the 
gesture specification code is a mixture of the recognition 
logic and the feedback definition. This makes it difficult 1) 
to write maintainable code and 2) reuse the gesture 
definition in different applications. To overcome these 
kinds of limitations, the research community has considered 
declarative approaches for the specification of gesture 
temporal evolution . In this paper, we discuss the creation 
of gestural interfaces using GestIT, a framework that allows 
declarative and compositional definition of gestures for 
different recognition platforms (e.g. multitouch and full-
body), through a set of examples and the comparison with 
existing approaches 
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INTRODUCTION 
The wide availability of devices with multitouch 
capabilities (phones, tablets and desktops), together with 
the spread of sensors that are able to track the whole body 
for interaction (such as Microsoft Kinect, Creative 
Interactive Gesture Camera, Leap Motion), has enabled a 
pervasive introduction of gestural interaction in our 
everyday life.  

From the development point of view, the possibility to 
exploit such new devices for creating more engaging 

interaction has been built on top of existing User Interface 
(UI frameworks and their reactive programming models. 
While this is reasonable from a software reuse point of 
view, applying the event-based management of the UI 
behaviour is difficult when dealing with gestural 
interaction, since a gesture is better represented as 
something varying over time rather than as an event 
corresponding to an action on a classical WIMP interface 
(e.g. a button click). Therefore, the application UI usually 
needs to provide users with  intermediate feedback during 
the gesture performance, and modelling an entire gesture 
with a single event forces the developers to redefine the 
gesture recognition logic.  

A possible solution for such kind of problem is provided by 
declarative and compositional approaches for the gesture 
definition. In this paper, we discuss the advantages and the 
drawbacks of this type of approach through our experience 
with the GestIT framework. 

CONTRIBUTION 
In this paper, we discuss how it is possible to address a set 
of problems in the engineering and development of gestural 
interfaces. The first and the second one are related to the 
gesture modelling in general, while the third is related to 
the compositional approach for gesture definition. The three 
problems we address can be summarized as follows: 

1. It is difficult to model a gesture only with a single event 
raised when its performance is completed. The need for 
intermediate feedback forces the developer to redefine 
the tracking part. From now on, we refer to this issue as 
the granularity problem. 

2. In [11], the authors state “Multitouch gesture 
recognition code is split across many location in the 
source”. This problem is even worse if we consider 
full-body gesture recognition, which has a higher 
number of points to track in addition to the other 
features (e.g. joints orientation, voice etc.). We refer to 
this issue as the spaghetti code problem. 

3. A compositional approach for gestures has to deal with 
the fact that “Multiple gestures may be based on the 
same initiating sequence of events” [11]. This means 
that a support for the gesture composition has to 
manage possible ambiguities in the resulting gesture 
definition. We refer to this issue as the selection 
ambiguity problem. 
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In this paper, we discuss the advantages of a declarative and 
compositional approach for gestural interaction, which are 
able to solve the aforementioned problems. In our examples 
we use GestIT1, a supporting framework that allows using 
the same composition mechanism on different platforms.  

The paper is organised as follows: after the discussion of 
the related work, we compare GestIT with the most 
complete declarative approach for gesture definition 
existing in literature [11, 12] and we detail the procedure 
for creating a gesture-based application through a concrete 
example. After that, we explain how it is possible to address 
the problems 1 and 2, leveraging the approach of currently 
available frameworks, and different solutions for the 
problem 3. In particular, we discuss the GestIT support for 
postponing the choice of the actual recognized gesture, 
offering the possibility to implement the conflicting 
changes on the UI as long running transactions. Finally, we 
provide an overview on cross-platform how it is possible to 
support a cross-platform gesture definition exploiting the 
discussed approach. 

RELATED WORK  

Multitouch frameworks 
Commercial frameworks for the development of multitouch 
interfaces (iOS [2], Android [1], etc.) are really similar to 
each other, and they all manage this kind of interaction at 
two levels. The first is the availability of common high-
level gestures (such as pinch and rotation), which are 
natively supported by UI controls. The notification is based 
on a single event at the end of the gesture completion. The 
second is the possibility to define custom gestures or, as we 
already explained, to provide intermediate feedback during 
the gesture performance. This is left to the handling of low-
level touch events, which are similar to mouse events.  

Full-body frameworks 
Different frameworks for the development of full body 
gestural interfaces exist, and they may be categorized 
according to the type of devices they support. For depth-
camera based devices the most important ones are the 
Microsoft Kinect SDK [13] and the Primesense NITE 
framework [16]. Both development kits allow the user’s 
skeleton tracking as a set of joint points, providing the 
position in 3D and the orientation. The Kinect SDK allows 
also the tracking of face expressions. NITE instead provides 
some predefined UI controls that recognize a set of gestures 
(wave, swipe etc.). The approach for the gesture modelling 
is the same discussed for the multitouch controls: the 
controls notify a single event at the completion of the given 
gesture. SDKs for remote controls provide the access to the 
low-level data sent by the device, without providing a direct 
support for the gesture recognition. For instance, WiiLib 
[19] and WiimoteLib [14] provide the possibility to 

                                                           
1 http://gestit.codeplex.com/  

interpret correctly the bytes sent by the Nintendo Wiimote 
controller for developing applications.  

DECLARATIVE APPROACHES 
We group in the declarative approach category the attempts 
to provide a formal description of the gesture performance. 
CoGest [7] exploited context-free grammars in order to 
describe conversational gestures, while GeForMT [9] 
exploited the same approach for describing multitouch 
gestures. Neither of them provides gesture recognition 
capabilities for the defined grammars. Other approaches 
such as GDML [5] allow the gesture recognition but 
provide only a single event when the gesture is completed.  

The frameworks Midas [17] and Mudra [8] propose a rule-
based definition of multitouch gestures and multimodal 
input. Both of them are affected by the spaghetti code 
problem, since the definition of the interaction effects on 
the UI is included in the rules specification. GestIT 
separates the gesture definition from the UI behavior code. 
In addition, GestIT provides more flexible handling of the 
ambiguities, since both approaches solve this problem 
simply forcing the selection of one gesture through 
priorities.  

GISpL [4] suffers both granularity and spaghetti code 
problems, since gestures cannot be decomposed into sub-
gestures and the behavior is defined together with the 
feature tracking. The latter problem affects also the 
approach in [10]. Shwartz et al. [18] provide a solution for 
the uncertainty only after the gesture performance.  Instead, 
GestIT manages such uncertainty also during the gesture 
execution, which is crucial for providing intermediate 
feedback. 

In the following sub-sections, we analyse the two 
approaches that to the best of our knowledge are the only 
ones that offer a declarative formalization together with 
recognition capabilities.  

Proton++ 
Proton++ [11, 12] is a multitouch framework allowing 
developers to declaratively describe custom gestures, 
separating the temporal sequencing of the events from the 
code related to the behaviour of the UI. Multitouch gestures 
are defined as regular expressions, where literals are 
identified by a triple composed of 1) the event type (touch 
down, move and up), 2) the touch identifier (e.g. 1 for the 
first finger, 2 for the second etc.) and 3) the object hit by 
the touch (e.g. the background, a particular shape etc.).  

It is possible to define a custom gesture exploiting the 
regular expression operators (concatenation, alternation, 
Kleene star). The underlining framework is able to identify 
conflicts between different composed gestures and to return 
their common longer prefix in order to 1) let the developers 
remove the ambiguous expression or 2) assign different 
probability scores to the two gestures. The runtime support 
receives the raw input from the device, transforms it into a 

188



touch event stream that is matched against the defined 
regular expressions.  

When one or more gestures are recognized, the support 
invokes the callbacks associated to the related expressions, 
selecting those with higher confidence scores (assigned by 
the developer in case of conflict between the expression 
definitions at design time).  The improved version of the 
framework (presented in [12]) included also the possibility 
for the developer to calculate a set of attributes that may be 
associated to an expression literal. For instance, it is 
possible to associate the current trajectory to a touch move 
event, and let the framework raise the associated events 
(read recognize the literal) only if its movement direction is 
the one that the designer specified (e.g. north, north-west, 
south etc.). Other examples of such attributes are the touch 
shape, the finger orientation etc. In Proton++ it is possible 
to define the custom gestures through a graphical notation 
(called tablature), which has been demonstrated to be more 
understandable for the developers if compared with normal 
code. 

GestIT 
GestIT [20] shares with Proton++ the declarative and 
compositional approach, and it is able to model gestures for 
different kind of devices such as multitouch screens or full-
body tracking devices. A custom gesture in GestIT is 
defined through an expression, starting from a set of ground 
terms that can be composed with a set of operators.  The 
operators are based on those provided by CTT for defining 
temporal relationships in task modelling [15].  

Ground terms represent the single features that are tracked 
by a given recognition device. For instance, if we consider a 
multitouch screen, the features that are tracked by the 
device are the position of the touches, while if we consider 
a full-body tracking device the features are the skeleton 
joint positions and orientations. In addition, it is possible to 
associate a predicate to each ground term in order to 
constraint its recognition to a given condition, which may 
be computed considering the current and/or the previous 
device events (e.g. the trajectory, speed etc.). The 
composition operators are the following: 

 Iterative (symbol ∗), which recognizes a given gesture 
an indefinite number of times 

 Sequence (symbol ≫), which expresses a sequence 
relationships among the operands, which are 
recognized in order, from left to right. 

 Parallel (symbol ||), which defines the simultaneous 
recognition of two or more gestures 

 Choice (symbol []), which allows the recognition of 
only one among the connected sub-gestures 

 Disabling (symbol [>), which stops the recognition of 
another gesture, typically used for stopping the 
iteration loops. 

 Order Independence (symbol |=|), which expresses 
that the connected sub-gestures may be performed in 

any order. But when the user starts performing one of 
the sub-gestures, s/he has to complete it before starting 
another one.  

Comparison 
In the next section we demonstrate that the possible 
gestures modelled using Proton++ are a subset of those that 
may be defined with GestIT. We prove it showing a general 
way for mapping Proton++ definition towards the GestIT 
notation. In addition, we show that there is a class of 
gestures described by GestIT, which is not possible to 
define using Proton++. Obviously, since Proton++ 
describes only multitouch gestures, we define the 
correspondence between the regular expression literals and 
the ground terms only for the multitouch platform.  

However, it is worth pointing out that the better 
expressivity of GestIT modelling approach is not due to the 
multitouch platform domain, but rather to a less expressive 
set of operators provided by Proton++. Indeed, it is possible 
to model full-body gestures using the Proton++ approach, 
providing a set of literals related to a full-body tracking 
device. Even in this case there is a set of gestures that can 
be expressed with GestIT but not with Proton++. 

Proton++ literals 
A Proton++ literal is identified by: 

1. An event type (touch down, touch move, touch up) 
2. A touch identifier 
3. An object hit by the touch 
4. A set of custom attributes values (one or more) 

In GestIT for multitouch a ground term is identified by an 
event type (touch start, touch move or end) and by a touch 
identifier. Therefore the correspondence between the first 
two elements of the Proton++ literal and the GestIT ground 
term is straightforward. The third and fourth component of 
a Proton++ literal can be all modelled constructing a 
correspondent predicate associated to a GestIT ground term. 
We recall that a predicate associated to a ground term in 
GestIT is a boolean condition whether the gesture 
performance conforms to a set of gesture-specific 
constraints. According to this definition, the third 
component can be modelled with a predicate that checks if 
the current touch position is contained into an object with a 
given id or belonging to a particular class.  

The forth component can be modelled considering, for each 
Proton++ custom attribute value, the function that computes 
its value according to the previous and the current position 
of the touch. Since it has to be defined in Proton++ for 
being associated to a literal, it is also possible to provide a 
predicate that compares the current attribute value with the 
desired one, in order to be used in GestIT. If more than one 
value is acceptable, the predicate can be defined simply 
through a boolean OR of the comparison for the different 
values. Obviously, if both the third and the fourth 
identification component of the literal need to be modelled, 
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it is sufficient to define a single predicate that is composed 
by the boolean AND of the corresponding predicates.  

Table 1 summarizes how to transform a Proton++ literal 
into a GestIT ground term. 

Proton: GestIT ்ܧ೔೏ை|௏భ…	௏೙ ்ܧ೔೏[݌] where: ݌ = 	݋ ∧ (ܽଵ ∨ …∨ ܽ௡)						݅ = 1…݊ 
݋	  = 	݁ݑݎݐ ⇔	ܱ௧௬௣௘ = ܱ	ܽ௜ = 	݁ݑݎݐ ௜ܣ	⇔	 = ௜ܸ								݅ = 1…݊ 

 Table 1: correspondence between the Proton++ literal and the 
GestIT ground term. E represents an event type, Tid a touch 
identifier. The o predicate models the touched object 
constraint in Proton++ literals: Otype is a property that 
maintains the current object type, O is a concrete value for the 
object type (e.g. start, rectangle etc.). The ai predicates model 
the custom attribute part of a Proton++ literal: Ai is a 
property that maintains the value of the attribute, while Vi is 
the actual attribute value. The p predicate puts all the 
definitions together and it is associated to the ground term in 
GestIT. 

Proton++ operators 
The correspondence between the Proton++ and GestIT 
operators is straightforward, since for each one defined by 
the former there is an equivalent in the latter. Table 2 
summarizes how to transform the operators from Proton++ 
to GestIT. 

Proton++: GestIT 

Concatenation: ܣ௉ܤ௉ Sequence: ீܣ ≫  ீܤ

Alternation: ܣ௉|ܤ௉ Choice: ]ீܣ	[	ீܤ 

Kleene star: ܣ௉∗ Iterative: ܣ௉∗ 
 Table 2: correspondence between the Proton++ operators and 
the GestIT ones. AP, BP and AG, BG represent respectively a 
Proton++ and a GestIT generic expression.  

Appling recursively the transformations defined in Table 1 
and Table 2 it is possible to build a GestIT gesture 
definition corresponding to a Proton++ one.  

The vice-versa is not possible in general, since there is no 
way to transform the Disabling and the Parallel operators 
from GestIT to Proton++.  

The Disabling operator is important in order to stop the 
recognition of iterative gestures, in particular the composed 
ones. Most of the times, it models how to interrupt the 
iterative recognition of a gesture. For instance in a grab 
gesture, the iterative recognition of hand movements is 
interrupted by opening the hand.  

In addition, it may be used also for modelling situations 
where the user performs an action that interrupts the 
interaction with the application. For instance, all the Kinect 
games have a “pause” gesture disabling the interaction. In 

the application we describe in the next section, the disable 
operator is used for modelling the fact that the application 
tracks the user only if she is in front of the screen. 
Therefore, the gesture “shoulders not parallel to the screen 
plane” disables the interaction. This is particularly relevant 
while interacting with devices continuously tracking the 
user (e.g. Microsoft Kinect), since it is important to provide 
the user with a way to disable the interaction at any time. 

The Parallel operator has a clear impact when modelling 
parallel input for e.g. multi-user applications. For instance, 
the parallel operator can be useful in a scenario where a 
user zooms a photo on a multitouch table while another user 
drags another picture, simply composing two existing 
gestures. In addition, it is also possible that parallel 
interaction occurs with a single user. For instance, a user 
may drag an object through a single-hand grab gesture and 
point with the other hand for selecting where to drop it.  

DECLARATIVE GESTURE MODELLING 
In this section, we show how it is possible to create a 
gestural interface with GestIT, as a sample for the 
declarative gesture modelling approach. After that, we 
show how the framework addresses the granularity, 
spaghetti code and selection ambiguity problems. In order 
to facilitate the discussion, we refer to two application 
examples. The first one is a touchless interface for a recipe 
browser. It allows the cooker to go through the description 
of the steps for preparing a dish without touching any 
device. This is particularly useful while cooking, since the 
user has dirty hands or is manipulating tools. The second 
one is a simple 3D model viewer, which can be controlled 
through gestures. The applications have been already 
discussed respectively in [21] and [20], here we analyse 
some of the supported interactions that exemplify the 
recurrent problems in gesture modelling.  

Creating a Declarative Gestural Interface 
In this section we detail how a developer can use GestIT in 
order to create a gestural UI. The application is a touchless 
recipe browser, organised into three presentations: the first 
one allows the user to select the recipe type (e.g. starter, 
first dish, main dish etc.), the second is dedicated to the 
selection of the recipe, while the last one presents the steps 
for cooking the selected dish with a video and subtitles.  

In the latter presentation it is possible to go through the 
steps back and further or to randomly jump from one point 
to the other of the procedure. We consider here the C# 
version for Windows Presentation Foundation (WPF) of the 
GestIT library.  

An interface in WPF is described by two different files. The 
first one contains the definition of the UI appearance and 
layout specified using XAML, an XML-based notation that 
can be used in .NET applications for initializing objects. In 
this case, it initializes the widgets contained into the 
application view. The second file involved in the UI 
definition contains the behaviour, and it is a normal C# 

190



class file. Since the two files are part of the same view class 
definition, the latter is called the “code-behind” file. 
Objects defined by the XAML file are accessible in the 
code-behind file and the methods defined in the code-
behind file are accessible in the XAML definition.  

In this example, we discuss the implementation of the first 
presentation, which is shown in Figure 1. The view is 
composed of a title on the upper part and a fisheye panel in 
the centre. The bottom part is dedicated to the status 
messages: the application notifies if it is tracking the user’s 
movements or not.  

 

Figure 1: Recipe selection UI 

The gestural interaction is defined inside the associated 
view through a set of custom XAML tags, which are shown 
in Table 3, and are equivalent to the expression notation we 
use in this paper. The high level description of the gesture 
interaction is the following: if the user is not in front of the 
screen, the application does not track his/her movements. 
When the user is in front of the screen, s/he can highlight 
one of the recipe types, which can be selected by a grab 
gesture (closing the hand).  

The interaction is a sequence of different gestures, which 
starts with the user that standing in front of the screen (the 
screen front gesture, from line 7 to line 13 in Table 3). Such 
constraint is modelled checking the position of the shoulder 
points, which have to be almost parallel to the sensor plane 
on the depth axis. The constraint is computed using a C# 
method (screenFront) that is referenced by the value of the 
Accept attribute and it is defined in the code-behind file 
associated to a XAML specification.  

When this gesture is completed, the user needs to be aware 
that the application is tracking his/her position, therefore 
the completion method associated to the gesture changes 
the message on the label at the bottom of the UI in Figure 1, 
setting its text to “Tracking user…” with a green 
background. The definition of this behaviour is again in the 
code-behind file, and it is linked with the gesture 
declaration through the Method attribute in the 
change.completed tag (from line 9 to 12 in Table 3). The 
method name in this case is screenFront_Completed. 

Once this gesture is completed, it is possible to interact with 
the screen, and the grab gesture implements the selection of 
the recipe type. First, we listen iteratively to the change of 
the right hand position (the Change tag with 
Feature=“HandRight” at line 17 in Table 3). Every time it 
is completed (read the user moves the hand), the 
moveHand_Completed method is executed. It updates the 
currently highlighted recipe type (the one with the red 
border in Figure 1).  

After that, the recognition iteration is interrupted in two 
cases. The first one is when the user closes the right hand 
(the Change at line 24 in Table 3), and the method 
rightHandClosed_Completed handles the completion of the 
grab gesture, changing the current presentation. The second 
case is when the user goes away and s/he is not in front of 
the screen anymore (line 33 in Table 3). This situation is 
modelled symmetrically with respect to the gesture at line 
7, the only difference is the Accepts method 
(notScreenFront), which is exactly the logical negation of 
ScreenFront. In both cases, the interruption is modelled 
using a disabling, declared respectively by the inner and the 
outer Disabling tags (line 14 and 16 in Table 3).  

In summary, for creating a gestural interface with GestIT is 
sufficient to: 

1. Create the UI view 
2. Define the gestures associated to a view (in the same 

file), composing declaratively existing gestures or 
creating new ones starting from ground-terms.  

3. Provide the methods for calculating the predicates 
associated to the specified gestures in the code-behind 
file (if any) 

4. Provide the UI behaviour associated to the gesture 
completion 

In the following sections we discuss how such organization 
solves the problems that are the topic of this paper.  

Granularity Problem 
The granularity problem derives from the modelling of 
complex gestures with a single event notification when it 
completes. Due to the time duration of the interaction 
gestures, it is usually needed to provide intermediate 
feedback during the performance, with the consequent need 
to split the complex gesture in smaller parts.  

In order to show the impact of such problem even for 
simple interactions, here we focus on two specific hand 
gestures we exploited in the touchless recipe browser: the 
first one is a simple hand grab, which is used in the first and 
the second presentation for selecting an object. The second 
one is a hand-drag gesture we used for controlling the 
recipe preparation video: the user grabs the knob of the 
video timeline and then it moves is back and forth before 
“releasing” it by simply opening the hand. 
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<TabItem x:Name="recipeType"> 
 <Grid Background="#FF92BCED"> 
  <!‐‐ gesture definition ‐‐> 
   <g:GestureDefinition x:Name="moveSelection" > 
     <g:Sequence Iterative="True"> 
       <!‐‐ turn (front of the screen) ‐‐> 
        <g:Change Feature="ShoulderLeft"  
             Accepts="screenFront"> 
           <g:Change.Completed> 
             <g:Handler 
                method="screenFront_Completed"/> 
          </g:Change.Completed> 
         </g:Change> 
         <g:Disabling> 
         <!‐‐ grab gesture  ‐‐> 
           <g:Disabling Iterative="True"> 
             <g:Change Feature="HandRight"  
                 Iterative="True"> 
              <g:Change.Completed> 
                <g:Handler 
                  method="moveHand_Completed" /> 
              </g:Change.Completed> 
             </g:Change> 
             <g:Change Feature="OpenRightHand"  
                       Accepts="rightHandClosed">
               <g:Change.Completed> 
                 <g:Handler 
             method="rightHandClosed_Completed"/>
               </g:Change.Completed> 
            </g:Change> 
          </g:Disabling> 
       <!‐‐ turn (not in front of the screen) ‐‐>
          <g:Change Feature="ShoulderLeft"     
                      Accepts="notScreenFront"> 
            <g:Change.Completed> 
              <g:Handler  
              method="notScreenFront_Completed"/>
            </g:Change.Completed> 
          </g:Change> 
        </g:Disabling> 
     </g:Sequence> 
  </g:GestureDefinition> 
 <!‐‐ view definition ‐‐> 
   <ui:FisheyePage x:Name="heading" /> 
    <kt:KinectSensorChooserUI       
       Name="kinectSensorChooser1" /> 
  </Grid> 
</TabItem> 

Table 3 UI view and gesture definition of the recipe selection 
presentation 

Table 4 shows how it is possible to model such gestures 
with GestIT. The grab gesture is composed by an iteration 
of the hand movement (݉ܪ௥∗), which is disabled by a 
change on the feature that tracks the opened or closed status 
of the hand (ܿܪ௥ in the expression). We force the 
recognition only of a hand closure specifying the ݈ܿ݀݁ݏ݋ 
predicate, which accepts only changes from opened to 
closed. The grab gesture is a prefix for the drag one. Indeed, 
it is defined by a grab gesture followed in sequence by an 
iterative movement of the hand, disabled again by a change 
on the hand status, this time from opened to closed 
(modelled by the ݊݁݌݋ predicate). 

Grab ݉ܪ௥∗	[> 	 	௥ܪܿ [݀݁ݏ݋݈ܿ]
Drag ܾܽݎܩ ≫ ݁ݏ݈ܴܽ݁݁	݁ݏ݈ܴܽ݁݁ = <]∗௥ܪ݉  [݊݁݌݋]௥ܪܿ
 Table 4: Grab and Drag hand gestures definition using 
GestIT. The expressions consider only the right-hand, the 
definition of the same gestures for the left hand is symmetric.  

With GestIT it is possible to reuse the definition of the grab 
gesture for defining the drag one, as it is shown in Table 4. 
However, the possibility to compose gestures with a set of 
operators does not guarantee the reusability of the 
definition. Indeed, even in this simple example, the 
programmer needs a fine-grained control not only on the 
gesture itself, but also on it subparts. In the first two screens 
of the recipe browser application the grab gesture is 
exploited for an object selection, and the user has to be 
aware of which object s/he is currently pointing. Therefore, 
there is the need to provide intermediate feedback during 
the grab gesture execution. This is supported in the 
application exploiting the fact that GestIT notifies the 
completion of the gesture sub-parts. With this mechanism, 
the application receives a notification when each time ݉ܪ௥	is completed, highlighting the pointed object. The 
handler associated to the completion of the entire gesture 
performs the recipe selection and the presentation change. 
While performing the drag gesture, there is no need to 
attach a handler to the hand movement in the grab part, but 
it is sufficient to specify that the position in the video 
stream is changing after the grab completion, and to update 
it during the movement of the hand in the release part of the 
gesture.  

It should be clear now how the declarative and 
compositional pattern offered by GestIT solves the 
granularity problem: the application developer is not bound 
to receiving a single notification when the whole gesture is 
completed. If needed, s/he is able to attach the behaviour 
also to the gesture sub-parts, handling them at the desired 
level of granularity.  

Spaghetti Code Problem 
The previous example may be used also for showing how to 
address the problem of having the gesture recognition code 
spread in many places (spaghetti code problem). Indeed, the 
declarative and compositional approach to the gesture 
definition allows the developer to separate the temporal 
sequencing aspect from the UI behaviour while defining a 
gesture. This allows maintaining the gesture recognition 
code isolated in a single place. 

In the example, the recognition code corresponds to the 
declaration of the gesture expression. The handlers define 
the UI behaviour, but they are not part of the recognition 
code, since they are simply attached to the run-time 
notification of the gesture completion (or its sub-parts). In 
this way, it is not only possible to isolate the recognition 
code into a single application, but it is also possible to 
provide a library of complex gesture definitions, which may 
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be reused in different scenarios, maintaining the possibility 
to attach the UI behaviour at the desired level of 
granularity. In this particular example, it would be possible 
to model the entire interaction instantiating a single 
complex gesture. Indeed, the Grab and the Release gestures 
differ only for the predicate on the change of the hand 
status feature. Therefore, it is possible to define with GestIT 
a complex gesture that is parametric with respect to this 
predicate.  

HandStatus [݌]ݏݑݐܽݐܵ݀݊ܽܪ = <]	∗௥ܪ݉ 	 [݌]௥ܪܿ
Grab [݀݁ݏ݋݈ܿ]ݏݑݐܽݐܵ݀݊ܽܪ		
Drag [݀݁ݏ݋݈ܿ]ݏݑݐܽݐܵ݀݊ܽܪ		 ≫  [݊݁݌݋]ݏݑݐܽݐܵ݀݊ܽܪ

 Table 5 Grab and Drag gestures defined using a single 
parametric complex gesture. 

Table 5 shows a different definition of the gestures in Table 
4, which demonstrates the level of flexibility in the 
factorization of the gesture recognition code in the proposed 
framework. 

Selection Ambiguity Problem 
In this section, we show how the problem of possible 
ambiguities that may arise when composing gestures is 
handled in GestIT. We exemplify the problem through a 
simple 3D viewer application [20]. The interaction with the 
3D model is the following: the user can change the camera 
position performing a “grabbing” the model gesture with a 
single hand and moving it, while it is possible to rotate the 
model executing the same gesture with both hands. The 
complete definition is shown in Table 6. For the sake of 
simplicity we omit the part related to the left hand in the 
Move definition, but the point we are going to discuss is 
symmetrically valid also for the left hand.  ݁ݒ݋ܯ	[]	݁ݐܽݐ݋ܴ		݁ݒ݋ܯ = [݀݁ݏ݋݈ܿ]௥ܪܿ ≫ <]	∗௥ܪ݉) 	 	௥ܪܿ ݁ݐܽݐ݋ܴ([݊݁݌݋] = 	 ([݀݁ݏ݋݈ܿ]௟ܪܿ||[݀݁ݏ݋݈ܿ]௥ܪܿ)  (([݀݁ݏ݋݈ܿ]௟ܪܿ||[݊݁݌݋]௥ܪܿ)																							<]∗([݀]௟ܪ݉||[݀]௥ܪ݉))																						≪

 Table 6: Gesture definition for the 3D viewer application 

The Move and the Rotate gestures are composed through a 
choice operator but, as it is possible to see in the definition, 
both gestures start with ܿܪ௥[݈ܿ݀݁ݏ݋]. Therefore it is not 
possible to perform the selection immediately after the 
recognition of the first ground term, but the recognition 
engine needs at least one “lookahead” term, and the 
selection has to be postponed to the next event raised from 
the device. However, the two instances of ܿܪ௥[݈ܿ݀݁ݏ݋] may 
have different handlers attached to the completion event, 
which should be executed in the meantime.  

In general it is possible that, when composing a set of 
different gestures through the choice operator, two or more 

gestures have a common prefix, which does not allow an 
immediate choice among them. We identified three possible 
ways for addressing this problem. The different solutions 
have an impact on the recognition behaviour while 
traversing the prefix. 

The first solution is the one proposed in [11], where the 
authors define an algorithm for extracting the prefix at 
design time. After having identified it, it is possible to apply 
a factorization process to the gesture definition expression, 
removing the ambiguity. This solution has the advantage 
that, since there is no ambiguity anymore, the recognition 
engine is always able perform the selection among the 
gestures immediately. The main drawback is that it breaks 
the compositional approach: after the factorization the two 
gesture definitions are merged and it is difficult for the 
designer to clearly identify them in the resulting expression. 
This leads to a lack of reusability of the resulting definition.  

The second possible solution is again to calculate the 
common prefix at design time, without changing the gesture 
definition. In this case, the recognition support is provided 
with both the gesture definition and the identified prefix. 
During the selection phase at runtime, the support buffers 
the raw device events until only one among the possible 
gestures can be selected according to the pre-calculated 
prefix, and then flushes the buffer considering only the 
selected gesture. This approach has the advantage of 
maintaining the compositional approach, while selecting the 
exact match for the gestures in choice: the runtime support 
suspends the selection until it receives the minimum 
number of events for identifying the correct gesture to 
choose. Once the gesture has been selected, the application 
receives the notification of the buffered events. The latter is 
the main drawback of this approach: the buffering causes a 
delay on the recognition that is reflected on the possibility 
to provide intermediate feedback while performing the 
common prefix gesture. Another drawback is that the 
common prefix has to be calculated at design time, which 
may need an exponential procedure for enumerating all the 
possible recognizable event sequences, which are needed 
for extracting the common prefix. For instance, an order 
independence expression with n operands in GestIT 
recognizes n! event sequences, since we should consider 
that the operands can be performed in any order.  

The third solution is based on a best effort approach, and is 
the one implemented by GestIT. When two or more 
expressions are connected with a choice operand, the 
recognition support executes them as if they were in 
parallel. If the user correctly performed one of the gestures 
in choice, when the parallel recognition passes the common 
prefix only one among the operands can further continue in 
the recognition process. At this point the choice is 
performed and only one gesture is successfully recognized, 
and the support stops trying to recognize the others. This 
approach solves the buffering delay problem of the previous 
solution, since the effects of the gestures contained into the 
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common prefix is immediately visible for the user. 
However, in this case the recognition support notified the 
recognition of the gestures included in the common prefix 
of all the operands involved in the choice. Consequently, 
the UI showed the effects associated to all of them, while 
only the ones related to the selected gesture should be 
visible. In order to have a correct behaviour, we need a 
mechanism to compensate the changes made by the 
gestures that were not selected by the recognition support, 
which means to revert the effects they had on the UI. Such 
mechanism can be supported through a notification 
signalling that the recognition of a gesture (to all gestures 
(ground term or complex) has been interrupted. In this way 
it is possible for the developer to specify how to 
compensate the undesired changes. This is the main 
drawback for this solution: the developer is responsible of 
handling the compensating actions.  

In order to better explain how this solution works, we 
present a small example of compensation. We consider the 
gesture model in Table 6, which allows the user to move 
and to rotate a 3D model. The UI provides intermediate 
feedback during the gesture execution in the following way: 
a four-heads arrow while the camera position is changing, 
and a circular arrow while the user is rotating the model.  

We suppose in our example that the user performs the grab 
gesture with both hands and we describe the behaviour of 
the recognition support during the recognition of the 
common prefix (in this case ܿܪ௥[݈ܿ݀݁ݏ݋]) and after the 
gesture selection has been performed. The common prefix 
handling is depicted in Figure 2: the upper part represents 
the stream of updates that comes from the device, the black 
arrow highlights the one that is under elaboration. The 
central part shows the gesture expression represented as a 
tree, with the ground terms that can be recognized 
immediately highlighted in black (we do not show the 
predicates associated to the ground terms, since for this 
example we suppose that they are always verified). Some 
tree nodes are associated to rectangular and circular badges, 
which represent respectively the completion and the 
compensation behaviour. Such handlers are external with 
respect to the gesture description and are defined by the 
developer. The lower part shows the effects on the UI of the 
gesture recognition. The left part depicts the UI before the 
recognition, the middle part shows the intermediate effects, 
while the right one shows the resulting state after the 
recognition.  

During the recognition of the common prefix, the support 
behaves as follows: after receiving the update coming from 
the device, the support executes the two instances of ܿܪ௥, 
highlighted by the black arrows in Figure 2, central part. 
Since the leftmost one has an associated completion handler 
(the A rectangular badge), the recognition support executes 
it. Therefore the UI changes its state and an arrow is shown 
above the 3D model (Figure 2, lower part). After that, the 
expression state changes (two ground terms have been 

recognized) and we have the situation depicted in Figure 3: 
the ground terms with a grey background have been 
completed, therefore the ground terms that may be 
recognized at this step are ݉ܪ௥ or ܿܪ௟. Since the next 
device update we are considering is ܿܪ௟ (Figure 3, upper 
part), the recognition support is now able to perform the 
selection of the right-hand part of the expression tree, while 
the left-hand part cannot be further executed.  

Therefore, the latter needs compensation, which consists of 
invoking the handlers associated to all the expressions 
previously completed (ܿܪ௥). In our example this 
corresponds to the execution of the handler identified with 
the B circular badge, which hides the four-heads arrow. 
After that, it is possible to continue with recognition of the 
gesture: the ܿܪ௟ ground term in the right-hand part of the 
expression is completed and also the parallel expression 
highlighted with a black arrow in Figure 3. Consequently 
the recognition support executes the completion handler 
represented with the C rectangular badge, which shows the 
circular arrow for providing the intermediate feedback 
during the model rotation, and the gesture recognition 
continues taking into account only the Rotate gesture. The 
effects of the handlers on the UI for this step are 
summarized by the lower part of Figure 3: before the 
recognition of the ground term it was visible on the UI the 
four-head arrow, which has been hidden by the B 
compensation handler. The C completion handler instead 
showed the circular arrow that determines the state of the 
UI after the ground term recognition.  

 

Figure 2: Example of common prefix handling in for the 
choice operator (part 1). 

From a theoretical point of view, the proposed solution 
considers the set of gestures in choice as instances of long-
running transactions [6], but in this case the components 
involved are not distributed. In case of failure of such kind 
of transactions, it is not possible in general to restore the 
initial state, as happens with the effects on the UI of the 
gestures that are not selected by the choice. Instead, a 
compensation process is provided, which handles the return 
to a consistent state. There is a large literature on how to 
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having such kind of homomorphism may reduce the 
complexity in supporting different devices.  

CONCLUSION AND FUTURE WORK 
The spread of gesture interfaces both in mobile devices, in 
game settings and more recently in smart environments is 
pushing for solving the problem of having a different 
programming paradigm, with respect to the single-event 
notification for describing gestures. Declarative and 
compositional approaches for gesture definition represent a 
step further towards such a new model, solving the single-
event granularity problem and providing a separation of 
concerns (the temporal sequence definition is separated from 
the behaviour), which allows a more understandable and 
maintainable code. In addition, we discussed the selection 
ambiguity problem, which affects the composition of 
gestures that have a common prefix through a choice 
operator. The recognition support has different possibilities 
for dealing with the uncertainty in the selection while 
performing this common prefix. We discussed the different 
solutions using GestIT as a sample framework and we 
demonstrated that it is more expressive than other libraries in 
literature. 

In the future, we plan to enhance the framework adding the 
support for more platform and devices (e.g. remotes). In 
addition we will exploit the declarative approach for 
identifying gestures that are not used directly for the 
interaction (posturing) but that may be used in order to detect 
the user’s emotional status.  
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