
GestIT: A Declarative and Compositional Framework
for Multiplatform Gesture Definition

Lucio Davide Spano
Università di Cagliari

Via Ospedale 72,
09124, Cagliari, Italy

davide.spano@unica.it

Antonio Cisternino
Università di Pisa

Largo B. Pontecorvo 3,
56127, Pisa, Italy
cisterni@di.unipi.it

Fabio Paternò
ISTI-CNR

Via G. Moruzzi 1,
56127, Pisa, Italy

fabio.paterno @isti.cnr.it

Gianni Fenu
Università di Cagliari

Via Ospedale 72,
09124, Cagliari, Italy

fenu @unica.it

ABSTRACT
Gestural interfaces allow complex manipulative interactions
that are hardly manageable using traditional event handlers.
Indeed, such kind of interaction has longer duration in time
than that carried out in form-based user interfaces, and
often it is important to provide users with intermediate
feedback during the gesture performance. Therefore, the
gesture specification code is a mixture of the recognition
logic and the feedback definition. This makes it difficult 1)
to write maintainable code and 2) reuse the gesture
definition in different applications. To overcome these
kinds of limitations, the research community has considered
declarative approaches for the specification of gesture
temporal evolution . In this paper, we discuss the creation
of gestural interfaces using GestIT, a framework that allows
declarative and compositional definition of gestures for
different recognition platforms (e.g. multitouch and full-
body), through a set of examples and the comparison with
existing approaches

Author Keywords
Gestural interaction, Input and Interaction Technologies,
Analysis Methods, Software architecture and engineering,
User Interface design.

ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
The wide availability of devices with multitouch
capabilities (phones, tablets and desktops), together with
the spread of sensors that are able to track the whole body
for interaction (such as Microsoft Kinect, Creative
Interactive Gesture Camera, Leap Motion), has enabled a
pervasive introduction of gestural interaction in our
everyday life.

From the development point of view, the possibility to
exploit such new devices for creating more engaging

interaction has been built on top of existing User Interface
(UI frameworks and their reactive programming models.
While this is reasonable from a software reuse point of
view, applying the event-based management of the UI
behaviour is difficult when dealing with gestural
interaction, since a gesture is better represented as
something varying over time rather than as an event
corresponding to an action on a classical WIMP interface
(e.g. a button click). Therefore, the application UI usually
needs to provide users with intermediate feedback during
the gesture performance, and modelling an entire gesture
with a single event forces the developers to redefine the
gesture recognition logic.

A possible solution for such kind of problem is provided by
declarative and compositional approaches for the gesture
definition. In this paper, we discuss the advantages and the
drawbacks of this type of approach through our experience
with the GestIT framework.

CONTRIBUTION
In this paper, we discuss how it is possible to address a set
of problems in the engineering and development of gestural
interfaces. The first and the second one are related to the
gesture modelling in general, while the third is related to
the compositional approach for gesture definition. The three
problems we address can be summarized as follows:

1. It is difficult to model a gesture only with a single event
raised when its performance is completed. The need for
intermediate feedback forces the developer to redefine
the tracking part. From now on, we refer to this issue as
the granularity problem.

2. In [11], the authors state “Multitouch gesture
recognition code is split across many location in the
source”. This problem is even worse if we consider
full-body gesture recognition, which has a higher
number of points to track in addition to the other
features (e.g. joints orientation, voice etc.). We refer to
this issue as the spaghetti code problem.

3. A compositional approach for gestures has to deal with
the fact that “Multiple gestures may be based on the
same initiating sequence of events” [11]. This means
that a support for the gesture composition has to
manage possible ambiguities in the resulting gesture
definition. We refer to this issue as the selection
ambiguity problem.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
EICS’13, June 24–27, 2013, London, United Kingdom.
Copyright © 2013 ACM 978-1-4503-2138-9/13/06...$15.00.

187

In this paper, we discuss the advantages of a declarative and
compositional approach for gestural interaction, which are
able to solve the aforementioned problems. In our examples
we use GestIT1, a supporting framework that allows using
the same composition mechanism on different platforms.

The paper is organised as follows: after the discussion of
the related work, we compare GestIT with the most
complete declarative approach for gesture definition
existing in literature [11, 12] and we detail the procedure
for creating a gesture-based application through a concrete
example. After that, we explain how it is possible to address
the problems 1 and 2, leveraging the approach of currently
available frameworks, and different solutions for the
problem 3. In particular, we discuss the GestIT support for
postponing the choice of the actual recognized gesture,
offering the possibility to implement the conflicting
changes on the UI as long running transactions. Finally, we
provide an overview on cross-platform how it is possible to
support a cross-platform gesture definition exploiting the
discussed approach.

RELATED WORK

Multitouch frameworks
Commercial frameworks for the development of multitouch
interfaces (iOS [2], Android [1], etc.) are really similar to
each other, and they all manage this kind of interaction at
two levels. The first is the availability of common high-
level gestures (such as pinch and rotation), which are
natively supported by UI controls. The notification is based
on a single event at the end of the gesture completion. The
second is the possibility to define custom gestures or, as we
already explained, to provide intermediate feedback during
the gesture performance. This is left to the handling of low-
level touch events, which are similar to mouse events.

Full-body frameworks
Different frameworks for the development of full body
gestural interfaces exist, and they may be categorized
according to the type of devices they support. For depth-
camera based devices the most important ones are the
Microsoft Kinect SDK [13] and the Primesense NITE
framework [16]. Both development kits allow the user’s
skeleton tracking as a set of joint points, providing the
position in 3D and the orientation. The Kinect SDK allows
also the tracking of face expressions. NITE instead provides
some predefined UI controls that recognize a set of gestures
(wave, swipe etc.). The approach for the gesture modelling
is the same discussed for the multitouch controls: the
controls notify a single event at the completion of the given
gesture. SDKs for remote controls provide the access to the
low-level data sent by the device, without providing a direct
support for the gesture recognition. For instance, WiiLib
[19] and WiimoteLib [14] provide the possibility to

1 http://gestit.codeplex.com/

interpret correctly the bytes sent by the Nintendo Wiimote
controller for developing applications.

DECLARATIVE APPROACHES
We group in the declarative approach category the attempts
to provide a formal description of the gesture performance.
CoGest [7] exploited context-free grammars in order to
describe conversational gestures, while GeForMT [9]
exploited the same approach for describing multitouch
gestures. Neither of them provides gesture recognition
capabilities for the defined grammars. Other approaches
such as GDML [5] allow the gesture recognition but
provide only a single event when the gesture is completed.

The frameworks Midas [17] and Mudra [8] propose a rule-
based definition of multitouch gestures and multimodal
input. Both of them are affected by the spaghetti code
problem, since the definition of the interaction effects on
the UI is included in the rules specification. GestIT
separates the gesture definition from the UI behavior code.
In addition, GestIT provides more flexible handling of the
ambiguities, since both approaches solve this problem
simply forcing the selection of one gesture through
priorities.

GISpL [4] suffers both granularity and spaghetti code
problems, since gestures cannot be decomposed into sub-
gestures and the behavior is defined together with the
feature tracking. The latter problem affects also the
approach in [10]. Shwartz et al. [18] provide a solution for
the uncertainty only after the gesture performance. Instead,
GestIT manages such uncertainty also during the gesture
execution, which is crucial for providing intermediate
feedback.

In the following sub-sections, we analyse the two
approaches that to the best of our knowledge are the only
ones that offer a declarative formalization together with
recognition capabilities.

Proton++
Proton++ [11, 12] is a multitouch framework allowing
developers to declaratively describe custom gestures,
separating the temporal sequencing of the events from the
code related to the behaviour of the UI. Multitouch gestures
are defined as regular expressions, where literals are
identified by a triple composed of 1) the event type (touch
down, move and up), 2) the touch identifier (e.g. 1 for the
first finger, 2 for the second etc.) and 3) the object hit by
the touch (e.g. the background, a particular shape etc.).

It is possible to define a custom gesture exploiting the
regular expression operators (concatenation, alternation,
Kleene star). The underlining framework is able to identify
conflicts between different composed gestures and to return
their common longer prefix in order to 1) let the developers
remove the ambiguous expression or 2) assign different
probability scores to the two gestures. The runtime support
receives the raw input from the device, transforms it into a

188

touch event stream that is matched against the defined
regular expressions.

When one or more gestures are recognized, the support
invokes the callbacks associated to the related expressions,
selecting those with higher confidence scores (assigned by
the developer in case of conflict between the expression
definitions at design time). The improved version of the
framework (presented in [12]) included also the possibility
for the developer to calculate a set of attributes that may be
associated to an expression literal. For instance, it is
possible to associate the current trajectory to a touch move
event, and let the framework raise the associated events
(read recognize the literal) only if its movement direction is
the one that the designer specified (e.g. north, north-west,
south etc.). Other examples of such attributes are the touch
shape, the finger orientation etc. In Proton++ it is possible
to define the custom gestures through a graphical notation
(called tablature), which has been demonstrated to be more
understandable for the developers if compared with normal
code.

GestIT
GestIT [20] shares with Proton++ the declarative and
compositional approach, and it is able to model gestures for
different kind of devices such as multitouch screens or full-
body tracking devices. A custom gesture in GestIT is
defined through an expression, starting from a set of ground
terms that can be composed with a set of operators. The
operators are based on those provided by CTT for defining
temporal relationships in task modelling [15].

Ground terms represent the single features that are tracked
by a given recognition device. For instance, if we consider a
multitouch screen, the features that are tracked by the
device are the position of the touches, while if we consider
a full-body tracking device the features are the skeleton
joint positions and orientations. In addition, it is possible to
associate a predicate to each ground term in order to
constraint its recognition to a given condition, which may
be computed considering the current and/or the previous
device events (e.g. the trajectory, speed etc.). The
composition operators are the following:

 Iterative (symbol ∗), which recognizes a given gesture
an indefinite number of times

 Sequence (symbol ≫), which expresses a sequence
relationships among the operands, which are
recognized in order, from left to right.

 Parallel (symbol ||), which defines the simultaneous
recognition of two or more gestures

 Choice (symbol []), which allows the recognition of
only one among the connected sub-gestures

 Disabling (symbol [>), which stops the recognition of
another gesture, typically used for stopping the
iteration loops.

 Order Independence (symbol |=|), which expresses
that the connected sub-gestures may be performed in

any order. But when the user starts performing one of
the sub-gestures, s/he has to complete it before starting
another one.

Comparison
In the next section we demonstrate that the possible
gestures modelled using Proton++ are a subset of those that
may be defined with GestIT. We prove it showing a general
way for mapping Proton++ definition towards the GestIT
notation. In addition, we show that there is a class of
gestures described by GestIT, which is not possible to
define using Proton++. Obviously, since Proton++
describes only multitouch gestures, we define the
correspondence between the regular expression literals and
the ground terms only for the multitouch platform.

However, it is worth pointing out that the better
expressivity of GestIT modelling approach is not due to the
multitouch platform domain, but rather to a less expressive
set of operators provided by Proton++. Indeed, it is possible
to model full-body gestures using the Proton++ approach,
providing a set of literals related to a full-body tracking
device. Even in this case there is a set of gestures that can
be expressed with GestIT but not with Proton++.

Proton++ literals
A Proton++ literal is identified by:

1. An event type (touch down, touch move, touch up)
2. A touch identifier
3. An object hit by the touch
4. A set of custom attributes values (one or more)

In GestIT for multitouch a ground term is identified by an
event type (touch start, touch move or end) and by a touch
identifier. Therefore the correspondence between the first
two elements of the Proton++ literal and the GestIT ground
term is straightforward. The third and fourth component of
a Proton++ literal can be all modelled constructing a
correspondent predicate associated to a GestIT ground term.
We recall that a predicate associated to a ground term in
GestIT is a boolean condition whether the gesture
performance conforms to a set of gesture-specific
constraints. According to this definition, the third
component can be modelled with a predicate that checks if
the current touch position is contained into an object with a
given id or belonging to a particular class.

The forth component can be modelled considering, for each
Proton++ custom attribute value, the function that computes
its value according to the previous and the current position
of the touch. Since it has to be defined in Proton++ for
being associated to a literal, it is also possible to provide a
predicate that compares the current attribute value with the
desired one, in order to be used in GestIT. If more than one
value is acceptable, the predicate can be defined simply
through a boolean OR of the comparison for the different
values. Obviously, if both the third and the fourth
identification component of the literal need to be modelled,

189

it is sufficient to define a single predicate that is composed
by the boolean AND of the corresponding predicates.

Table 1 summarizes how to transform a Proton++ literal
into a GestIT ground term.

Proton: GestIT ்ܧ೔೏ை|௏భ…	௏೙ ்ܧ೔೏[݌] where: ݌ = 	݋ ∧ (ܽଵ ∨ …∨ ܽ௡)						݅ = 1…݊
݋	 = 	݁ݑݎݐ ⇔	ܱ௧௬௣௘ = ܱ	ܽ௜ = 	݁ݑݎݐ ௜ܣ	⇔	 = ௜ܸ								݅ = 1…݊

 Table 1: correspondence between the Proton++ literal and the
GestIT ground term. E represents an event type, Tid a touch
identifier. The o predicate models the touched object
constraint in Proton++ literals: Otype is a property that
maintains the current object type, O is a concrete value for the
object type (e.g. start, rectangle etc.). The ai predicates model
the custom attribute part of a Proton++ literal: Ai is a
property that maintains the value of the attribute, while Vi is
the actual attribute value. The p predicate puts all the
definitions together and it is associated to the ground term in
GestIT.

Proton++ operators
The correspondence between the Proton++ and GestIT
operators is straightforward, since for each one defined by
the former there is an equivalent in the latter. Table 2
summarizes how to transform the operators from Proton++
to GestIT.

Proton++: GestIT

Concatenation: ܣ௉ܤ௉ Sequence: ீܣ ≫ ீܤ

Alternation: ܣ௉|ܤ௉ Choice:]ீܣ	[ீܤ

Kleene star: ܣ௉∗ Iterative: ܣ௉∗
 Table 2: correspondence between the Proton++ operators and
the GestIT ones. AP, BP and AG, BG represent respectively a
Proton++ and a GestIT generic expression.

Appling recursively the transformations defined in Table 1
and Table 2 it is possible to build a GestIT gesture
definition corresponding to a Proton++ one.

The vice-versa is not possible in general, since there is no
way to transform the Disabling and the Parallel operators
from GestIT to Proton++.

The Disabling operator is important in order to stop the
recognition of iterative gestures, in particular the composed
ones. Most of the times, it models how to interrupt the
iterative recognition of a gesture. For instance in a grab
gesture, the iterative recognition of hand movements is
interrupted by opening the hand.

In addition, it may be used also for modelling situations
where the user performs an action that interrupts the
interaction with the application. For instance, all the Kinect
games have a “pause” gesture disabling the interaction. In

the application we describe in the next section, the disable
operator is used for modelling the fact that the application
tracks the user only if she is in front of the screen.
Therefore, the gesture “shoulders not parallel to the screen
plane” disables the interaction. This is particularly relevant
while interacting with devices continuously tracking the
user (e.g. Microsoft Kinect), since it is important to provide
the user with a way to disable the interaction at any time.

The Parallel operator has a clear impact when modelling
parallel input for e.g. multi-user applications. For instance,
the parallel operator can be useful in a scenario where a
user zooms a photo on a multitouch table while another user
drags another picture, simply composing two existing
gestures. In addition, it is also possible that parallel
interaction occurs with a single user. For instance, a user
may drag an object through a single-hand grab gesture and
point with the other hand for selecting where to drop it.

DECLARATIVE GESTURE MODELLING
In this section, we show how it is possible to create a
gestural interface with GestIT, as a sample for the
declarative gesture modelling approach. After that, we
show how the framework addresses the granularity,
spaghetti code and selection ambiguity problems. In order
to facilitate the discussion, we refer to two application
examples. The first one is a touchless interface for a recipe
browser. It allows the cooker to go through the description
of the steps for preparing a dish without touching any
device. This is particularly useful while cooking, since the
user has dirty hands or is manipulating tools. The second
one is a simple 3D model viewer, which can be controlled
through gestures. The applications have been already
discussed respectively in [21] and [20], here we analyse
some of the supported interactions that exemplify the
recurrent problems in gesture modelling.

Creating a Declarative Gestural Interface
In this section we detail how a developer can use GestIT in
order to create a gestural UI. The application is a touchless
recipe browser, organised into three presentations: the first
one allows the user to select the recipe type (e.g. starter,
first dish, main dish etc.), the second is dedicated to the
selection of the recipe, while the last one presents the steps
for cooking the selected dish with a video and subtitles.

In the latter presentation it is possible to go through the
steps back and further or to randomly jump from one point
to the other of the procedure. We consider here the C#
version for Windows Presentation Foundation (WPF) of the
GestIT library.

An interface in WPF is described by two different files. The
first one contains the definition of the UI appearance and
layout specified using XAML, an XML-based notation that
can be used in .NET applications for initializing objects. In
this case, it initializes the widgets contained into the
application view. The second file involved in the UI
definition contains the behaviour, and it is a normal C#

190

class file. Since the two files are part of the same view class
definition, the latter is called the “code-behind” file.
Objects defined by the XAML file are accessible in the
code-behind file and the methods defined in the code-
behind file are accessible in the XAML definition.

In this example, we discuss the implementation of the first
presentation, which is shown in Figure 1. The view is
composed of a title on the upper part and a fisheye panel in
the centre. The bottom part is dedicated to the status
messages: the application notifies if it is tracking the user’s
movements or not.

Figure 1: Recipe selection UI

The gestural interaction is defined inside the associated
view through a set of custom XAML tags, which are shown
in Table 3, and are equivalent to the expression notation we
use in this paper. The high level description of the gesture
interaction is the following: if the user is not in front of the
screen, the application does not track his/her movements.
When the user is in front of the screen, s/he can highlight
one of the recipe types, which can be selected by a grab
gesture (closing the hand).

The interaction is a sequence of different gestures, which
starts with the user that standing in front of the screen (the
screen front gesture, from line 7 to line 13 in Table 3). Such
constraint is modelled checking the position of the shoulder
points, which have to be almost parallel to the sensor plane
on the depth axis. The constraint is computed using a C#
method (screenFront) that is referenced by the value of the
Accept attribute and it is defined in the code-behind file
associated to a XAML specification.

When this gesture is completed, the user needs to be aware
that the application is tracking his/her position, therefore
the completion method associated to the gesture changes
the message on the label at the bottom of the UI in Figure 1,
setting its text to “Tracking user…” with a green
background. The definition of this behaviour is again in the
code-behind file, and it is linked with the gesture
declaration through the Method attribute in the
change.completed tag (from line 9 to 12 in Table 3). The
method name in this case is screenFront_Completed.

Once this gesture is completed, it is possible to interact with
the screen, and the grab gesture implements the selection of
the recipe type. First, we listen iteratively to the change of
the right hand position (the Change tag with
Feature=“HandRight” at line 17 in Table 3). Every time it
is completed (read the user moves the hand), the
moveHand_Completed method is executed. It updates the
currently highlighted recipe type (the one with the red
border in Figure 1).

After that, the recognition iteration is interrupted in two
cases. The first one is when the user closes the right hand
(the Change at line 24 in Table 3), and the method
rightHandClosed_Completed handles the completion of the
grab gesture, changing the current presentation. The second
case is when the user goes away and s/he is not in front of
the screen anymore (line 33 in Table 3). This situation is
modelled symmetrically with respect to the gesture at line
7, the only difference is the Accepts method
(notScreenFront), which is exactly the logical negation of
ScreenFront. In both cases, the interruption is modelled
using a disabling, declared respectively by the inner and the
outer Disabling tags (line 14 and 16 in Table 3).

In summary, for creating a gestural interface with GestIT is
sufficient to:

1. Create the UI view
2. Define the gestures associated to a view (in the same

file), composing declaratively existing gestures or
creating new ones starting from ground-terms.

3. Provide the methods for calculating the predicates
associated to the specified gestures in the code-behind
file (if any)

4. Provide the UI behaviour associated to the gesture
completion

In the following sections we discuss how such organization
solves the problems that are the topic of this paper.

Granularity Problem
The granularity problem derives from the modelling of
complex gestures with a single event notification when it
completes. Due to the time duration of the interaction
gestures, it is usually needed to provide intermediate
feedback during the performance, with the consequent need
to split the complex gesture in smaller parts.

In order to show the impact of such problem even for
simple interactions, here we focus on two specific hand
gestures we exploited in the touchless recipe browser: the
first one is a simple hand grab, which is used in the first and
the second presentation for selecting an object. The second
one is a hand-drag gesture we used for controlling the
recipe preparation video: the user grabs the knob of the
video timeline and then it moves is back and forth before
“releasing” it by simply opening the hand.

191

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

<TabItem x:Name="recipeType">
 <Grid Background="#FF92BCED">
 <!‐‐ gesture definition ‐‐>
 <g:GestureDefinition x:Name="moveSelection" >
 <g:Sequence Iterative="True">
 <!‐‐ turn (front of the screen) ‐‐>
 <g:Change Feature="ShoulderLeft"
 Accepts="screenFront">
 <g:Change.Completed>
 <g:Handler
 method="screenFront_Completed"/>
 </g:Change.Completed>
 </g:Change>
 <g:Disabling>
 <!‐‐ grab gesture ‐‐>
 <g:Disabling Iterative="True">
 <g:Change Feature="HandRight"
 Iterative="True">
 <g:Change.Completed>
 <g:Handler
 method="moveHand_Completed" />
 </g:Change.Completed>
 </g:Change>
 <g:Change Feature="OpenRightHand"
 Accepts="rightHandClosed">
 <g:Change.Completed>
 <g:Handler
 method="rightHandClosed_Completed"/>
 </g:Change.Completed>
 </g:Change>
 </g:Disabling>
 <!‐‐ turn (not in front of the screen) ‐‐>
 <g:Change Feature="ShoulderLeft"
 Accepts="notScreenFront">
 <g:Change.Completed>
 <g:Handler
 method="notScreenFront_Completed"/>
 </g:Change.Completed>
 </g:Change>
 </g:Disabling>
 </g:Sequence>
 </g:GestureDefinition>
 <!‐‐ view definition ‐‐>
 <ui:FisheyePage x:Name="heading" />
 <kt:KinectSensorChooserUI
 Name="kinectSensorChooser1" />
 </Grid>
</TabItem>

Table 3 UI view and gesture definition of the recipe selection
presentation

Table 4 shows how it is possible to model such gestures
with GestIT. The grab gesture is composed by an iteration
of the hand movement (݉ܪ௥∗), which is disabled by a
change on the feature that tracks the opened or closed status
of the hand (ܿܪ௥ in the expression). We force the
recognition only of a hand closure specifying the ݈ܿ݀݁ݏ݋
predicate, which accepts only changes from opened to
closed. The grab gesture is a prefix for the drag one. Indeed,
it is defined by a grab gesture followed in sequence by an
iterative movement of the hand, disabled again by a change
on the hand status, this time from opened to closed
(modelled by the ݊݁݌݋ predicate).

Grab ݉ܪ௥∗	[> 	 	௥ܪܿ [݀݁ݏ݋݈ܿ]
Drag ܾܽݎܩ ≫ ݁ݏ݈ܴܽ݁݁	݁ݏ݈ܴܽ݁݁ = <]∗௥ܪ݉ [݊݁݌݋]௥ܪܿ
 Table 4: Grab and Drag hand gestures definition using
GestIT. The expressions consider only the right-hand, the
definition of the same gestures for the left hand is symmetric.

With GestIT it is possible to reuse the definition of the grab
gesture for defining the drag one, as it is shown in Table 4.
However, the possibility to compose gestures with a set of
operators does not guarantee the reusability of the
definition. Indeed, even in this simple example, the
programmer needs a fine-grained control not only on the
gesture itself, but also on it subparts. In the first two screens
of the recipe browser application the grab gesture is
exploited for an object selection, and the user has to be
aware of which object s/he is currently pointing. Therefore,
there is the need to provide intermediate feedback during
the grab gesture execution. This is supported in the
application exploiting the fact that GestIT notifies the
completion of the gesture sub-parts. With this mechanism,
the application receives a notification when each time ݉ܪ௥	is completed, highlighting the pointed object. The
handler associated to the completion of the entire gesture
performs the recipe selection and the presentation change.
While performing the drag gesture, there is no need to
attach a handler to the hand movement in the grab part, but
it is sufficient to specify that the position in the video
stream is changing after the grab completion, and to update
it during the movement of the hand in the release part of the
gesture.

It should be clear now how the declarative and
compositional pattern offered by GestIT solves the
granularity problem: the application developer is not bound
to receiving a single notification when the whole gesture is
completed. If needed, s/he is able to attach the behaviour
also to the gesture sub-parts, handling them at the desired
level of granularity.

Spaghetti Code Problem
The previous example may be used also for showing how to
address the problem of having the gesture recognition code
spread in many places (spaghetti code problem). Indeed, the
declarative and compositional approach to the gesture
definition allows the developer to separate the temporal
sequencing aspect from the UI behaviour while defining a
gesture. This allows maintaining the gesture recognition
code isolated in a single place.

In the example, the recognition code corresponds to the
declaration of the gesture expression. The handlers define
the UI behaviour, but they are not part of the recognition
code, since they are simply attached to the run-time
notification of the gesture completion (or its sub-parts). In
this way, it is not only possible to isolate the recognition
code into a single application, but it is also possible to
provide a library of complex gesture definitions, which may

192

be reused in different scenarios, maintaining the possibility
to attach the UI behaviour at the desired level of
granularity. In this particular example, it would be possible
to model the entire interaction instantiating a single
complex gesture. Indeed, the Grab and the Release gestures
differ only for the predicate on the change of the hand
status feature. Therefore, it is possible to define with GestIT
a complex gesture that is parametric with respect to this
predicate.

HandStatus [݌]ݏݑݐܽݐܵ݀݊ܽܪ = <]	∗௥ܪ݉ 	 [݌]௥ܪܿ
Grab [݀݁ݏ݋݈ܿ]ݏݑݐܽݐܵ݀݊ܽܪ		
Drag [݀݁ݏ݋݈ܿ]ݏݑݐܽݐܵ݀݊ܽܪ		 ≫ [݊݁݌݋]ݏݑݐܽݐܵ݀݊ܽܪ

 Table 5 Grab and Drag gestures defined using a single
parametric complex gesture.

Table 5 shows a different definition of the gestures in Table
4, which demonstrates the level of flexibility in the
factorization of the gesture recognition code in the proposed
framework.

Selection Ambiguity Problem
In this section, we show how the problem of possible
ambiguities that may arise when composing gestures is
handled in GestIT. We exemplify the problem through a
simple 3D viewer application [20]. The interaction with the
3D model is the following: the user can change the camera
position performing a “grabbing” the model gesture with a
single hand and moving it, while it is possible to rotate the
model executing the same gesture with both hands. The
complete definition is shown in Table 6. For the sake of
simplicity we omit the part related to the left hand in the
Move definition, but the point we are going to discuss is
symmetrically valid also for the left hand. ݁ݒ݋ܯ	[]	݁ݐܽݐ݋ܴ		݁ݒ݋ܯ = [݀݁ݏ݋݈ܿ]௥ܪܿ ≫ <]	∗௥ܪ݉) 	 	௥ܪܿ ݁ݐܽݐ݋ܴ([݊݁݌݋] = 	 ([݀݁ݏ݋݈ܿ]௟ܪܿ||[݀݁ݏ݋݈ܿ]௥ܪܿ) (([݀݁ݏ݋݈ܿ]௟ܪܿ||[݊݁݌݋]௥ܪܿ)																							<]∗([݀]௟ܪ݉||[݀]௥ܪ݉))																						≪

 Table 6: Gesture definition for the 3D viewer application

The Move and the Rotate gestures are composed through a
choice operator but, as it is possible to see in the definition,
both gestures start with ܿܪ௥[݈ܿ݀݁ݏ݋]. Therefore it is not
possible to perform the selection immediately after the
recognition of the first ground term, but the recognition
engine needs at least one “lookahead” term, and the
selection has to be postponed to the next event raised from
the device. However, the two instances of ܿܪ௥[݈ܿ݀݁ݏ݋] may
have different handlers attached to the completion event,
which should be executed in the meantime.

In general it is possible that, when composing a set of
different gestures through the choice operator, two or more

gestures have a common prefix, which does not allow an
immediate choice among them. We identified three possible
ways for addressing this problem. The different solutions
have an impact on the recognition behaviour while
traversing the prefix.

The first solution is the one proposed in [11], where the
authors define an algorithm for extracting the prefix at
design time. After having identified it, it is possible to apply
a factorization process to the gesture definition expression,
removing the ambiguity. This solution has the advantage
that, since there is no ambiguity anymore, the recognition
engine is always able perform the selection among the
gestures immediately. The main drawback is that it breaks
the compositional approach: after the factorization the two
gesture definitions are merged and it is difficult for the
designer to clearly identify them in the resulting expression.
This leads to a lack of reusability of the resulting definition.

The second possible solution is again to calculate the
common prefix at design time, without changing the gesture
definition. In this case, the recognition support is provided
with both the gesture definition and the identified prefix.
During the selection phase at runtime, the support buffers
the raw device events until only one among the possible
gestures can be selected according to the pre-calculated
prefix, and then flushes the buffer considering only the
selected gesture. This approach has the advantage of
maintaining the compositional approach, while selecting the
exact match for the gestures in choice: the runtime support
suspends the selection until it receives the minimum
number of events for identifying the correct gesture to
choose. Once the gesture has been selected, the application
receives the notification of the buffered events. The latter is
the main drawback of this approach: the buffering causes a
delay on the recognition that is reflected on the possibility
to provide intermediate feedback while performing the
common prefix gesture. Another drawback is that the
common prefix has to be calculated at design time, which
may need an exponential procedure for enumerating all the
possible recognizable event sequences, which are needed
for extracting the common prefix. For instance, an order
independence expression with n operands in GestIT
recognizes n! event sequences, since we should consider
that the operands can be performed in any order.

The third solution is based on a best effort approach, and is
the one implemented by GestIT. When two or more
expressions are connected with a choice operand, the
recognition support executes them as if they were in
parallel. If the user correctly performed one of the gestures
in choice, when the parallel recognition passes the common
prefix only one among the operands can further continue in
the recognition process. At this point the choice is
performed and only one gesture is successfully recognized,
and the support stops trying to recognize the others. This
approach solves the buffering delay problem of the previous
solution, since the effects of the gestures contained into the

193

common prefix is immediately visible for the user.
However, in this case the recognition support notified the
recognition of the gestures included in the common prefix
of all the operands involved in the choice. Consequently,
the UI showed the effects associated to all of them, while
only the ones related to the selected gesture should be
visible. In order to have a correct behaviour, we need a
mechanism to compensate the changes made by the
gestures that were not selected by the recognition support,
which means to revert the effects they had on the UI. Such
mechanism can be supported through a notification
signalling that the recognition of a gesture (to all gestures
(ground term or complex) has been interrupted. In this way
it is possible for the developer to specify how to
compensate the undesired changes. This is the main
drawback for this solution: the developer is responsible of
handling the compensating actions.

In order to better explain how this solution works, we
present a small example of compensation. We consider the
gesture model in Table 6, which allows the user to move
and to rotate a 3D model. The UI provides intermediate
feedback during the gesture execution in the following way:
a four-heads arrow while the camera position is changing,
and a circular arrow while the user is rotating the model.

We suppose in our example that the user performs the grab
gesture with both hands and we describe the behaviour of
the recognition support during the recognition of the
common prefix (in this case ܿܪ௥[݈ܿ݀݁ݏ݋]) and after the
gesture selection has been performed. The common prefix
handling is depicted in Figure 2: the upper part represents
the stream of updates that comes from the device, the black
arrow highlights the one that is under elaboration. The
central part shows the gesture expression represented as a
tree, with the ground terms that can be recognized
immediately highlighted in black (we do not show the
predicates associated to the ground terms, since for this
example we suppose that they are always verified). Some
tree nodes are associated to rectangular and circular badges,
which represent respectively the completion and the
compensation behaviour. Such handlers are external with
respect to the gesture description and are defined by the
developer. The lower part shows the effects on the UI of the
gesture recognition. The left part depicts the UI before the
recognition, the middle part shows the intermediate effects,
while the right one shows the resulting state after the
recognition.

During the recognition of the common prefix, the support
behaves as follows: after receiving the update coming from
the device, the support executes the two instances of ܿܪ௥,
highlighted by the black arrows in Figure 2, central part.
Since the leftmost one has an associated completion handler
(the A rectangular badge), the recognition support executes
it. Therefore the UI changes its state and an arrow is shown
above the 3D model (Figure 2, lower part). After that, the
expression state changes (two ground terms have been

recognized) and we have the situation depicted in Figure 3:
the ground terms with a grey background have been
completed, therefore the ground terms that may be
recognized at this step are ݉ܪ௥ or ܿܪ௟. Since the next
device update we are considering is ܿܪ௟ (Figure 3, upper
part), the recognition support is now able to perform the
selection of the right-hand part of the expression tree, while
the left-hand part cannot be further executed.

Therefore, the latter needs compensation, which consists of
invoking the handlers associated to all the expressions
previously completed (ܿܪ௥). In our example this
corresponds to the execution of the handler identified with
the B circular badge, which hides the four-heads arrow.
After that, it is possible to continue with recognition of the
gesture: the ܿܪ௟ ground term in the right-hand part of the
expression is completed and also the parallel expression
highlighted with a black arrow in Figure 3. Consequently
the recognition support executes the completion handler
represented with the C rectangular badge, which shows the
circular arrow for providing the intermediate feedback
during the model rotation, and the gesture recognition
continues taking into account only the Rotate gesture. The
effects of the handlers on the UI for this step are
summarized by the lower part of Figure 3: before the
recognition of the ground term it was visible on the UI the
four-head arrow, which has been hidden by the B
compensation handler. The C completion handler instead
showed the circular arrow that determines the state of the
UI after the ground term recognition.

Figure 2: Example of common prefix handling in for the
choice operator (part 1).

From a theoretical point of view, the proposed solution
considers the set of gestures in choice as instances of long-
running transactions [6], but in this case the components
involved are not distributed. In case of failure of such kind
of transactions, it is not possible in general to restore the
initial state, as happens with the effects on the UI of the
gestures that are not selected by the choice. Instead, a
compensation process is provided, which handles the return
to a consistent state. There is a large literature on how to

194

m
p

F
o

C
S
o
a
c
d
tr
ta
d
s
s
r
i
c
m

W
iP
p
th
h
b
w

T
s





manage long-r
provide a good

Figure 3: Examp
operator (part 2

CROSS PLATF
Since the comp
on a set of build
a set of well-de
create interface
different reco
ranslation of th
arget one. Thi

definition not o
same recognitio
still makes sen
recognition cap
s possible, w

conducted with
multitouch and ܲܽ݊	[]݄ܲ݅݊ܿܲܽ݊ = ݄ܿ݊݅ܲݎܽݐܵ = ݊ܧ)																		ݐܵ)

 Table 7:

We started fro
Phone, which s

pinch gesture f
hrough the ch

how it is easy t
by simply chan
without any add

The UI behavio
summarized as

 To the ݋ܯ
event hand
position to

 To each on
associated
between th

running trans
survey on the

ple of common
).

FORM GESTUR
positional gestu
ding blocks (gro
efined composi
s that share the
gnition platfo
he source platf
is opens the p
only for differe
on device but a

nse, with differ
pabilities. In or
we report here
h the two pla
full-body. ݄	ݐଵ ≫ (ଶ݀݊ܧ	|=|ଵ݀݊ݐݎܽݐܵ	|=|ଵݐݎܽݐ<]	∗ଵ݁ݒ݋ܯ
Simple drawing

om a simple d
supported the p
for zooming. S
oice operator,
to support the z
nging the choic
ditional effort f

our associated t
follows: ݁ݒ block of th

dler that draws
the current one

ne of the ݁ݒ݋ܯ
an event handl

he previous and

sactions, in [
topic.

prefix handling

RE MODELLIN
uring model de
ound terms), co
ition operators,
e same gesture
orms finding
form ground te
possibility to r
ent applications
also, if the inte
rent devices tha
rder to explain
e on a first
atforms suppor

> (ଶݐ	ଵ݀݊ܧ ≫ ∗ଵ݁ݒ݋ܯ)

g canvas gesture

drawing canvas
pan gesture for
Such gestures
as defined in

zooming featur
ce operator to
for the develope

to the gesture d

he pan gesture w
a line from th

e.
blocks of the p

ler that comput
d the current d

[3] the autho

g in for the choi

NG
efinition is bas
onnected throug
, it is possible
definition acro

a meaningf
erms towards th
euse the gestu
s that exploit th
eraction provid
at have differe

n how such reu
experiment w

rted by GestI

(∗ଶ݁ݒ݋ܯ|	|	 [>
e modelling

s application f
drawing and th
were connect
Table 7. Noti

re while drawin
the parallel on

er.

definition can b

we associated
he previous tou

pinch gesture, w
tes the differen
distance betwe

ors

ice

ed
gh
to

oss
ful
he

ure
he
ed

ent
use
we
IT:

for
he
ed
ice
ng
ne,

be

an
ch

we
nce
en

the
the

In orde
it is n
becaus
meanin
definiti
new co
definiti
end are
the ges
buildin
idea is
the iPh
(therefo
additio
when t
rely on
under
“touchi
the cur

ଵ݀݊ܧଶ݁ݒ݋ܯଵ݁ݒ݋ܯଶݐݎܽݐଵܵݐݎܽݐܵ ଶ݀݊ܧ= =
Table

More
gesture
hand, (ݔ௥, ௥ݕ
represe௣ܶ = (
can be

It is wo
for a q
the gr
platform
than tw
in such
design
gesture
exampl
Howev
devices
settings
applica
remote

e two touches.
e view, otherw

er to create a fu
not possible to
se concepts as
ng in such p
ion of the ges
oncepts. In ou
ion of what a
e. If we add a
stures that hav

ng blocks will
to associate a p
hone to the p

fore, the maxim
on, we have to
the touch starts
n the depth valu
a certain thres
ing” our virtua

rrent hand posit

Multitouch Gଵ = ݐ)௥ݖ]ݎ െ 1ଶ = ݐ)௟ݖ]݈ െ 1)
ଵ = ݐ)௥ݖ]ݎ െ 1ଶ = ݐ)௟ݖ]݈ െ 1)= ݐ)௥ݖ]ݎ െ 1)= ݐ)௟ݖ]݈ െ 1)
e 8: Mapping of

precisely, we
es according to
indicated resp, ௥). Moreoveݖ

ents the depth(ݔ, ,ݕ ݇) where
found in Table

orth pointing o
quite “extreme”
round term al
m all the mul

wo fingers, whi
h kind of applic
point of view

es to the full b
le should be c

ver, such kind
s that are explo
s. For instan
ations that reco
e or a depth ca

. If it is increa
wise it zooms ou

ull-body version
o reuse directl
pan, pinch, tou

platform. How
sture also allow
ur case, what
touch start, a
precise definit

ve been constr
be defined co

point that repre
position of on
mum number o
o define a cri
s and when it
ue of the positio
shold, we can
al screen, other
tion as a touch.

Ground Term) > ݇ ((ݐ)௥ݖ	∧ > ݇ (1(ݐ)௟ݖ	∧ ൑ ݇ ((ݐ)௥ݖ	∧ ൑ ݇ ൑(ݐ)௟ݖ	∧ ݇ ∧ (ݐ)௥ݖ >൑ ݇ ∧ (ݐ)௟ݖ >
f the multitouch

body platfor

need to defi
o the 3D posit
pectively as
er, we have to
h barrier for t݇ is a constant
e 8.

out that, even i
” change of pla
llows us to s
ltitouch gestur
ich are the larg
cations. Obvio
it may be a ba

body gesture p
considered onl
d of approach
oited for recog

nce, it can b
ognize the same
amera-based op

sed, the canva
ut the view acco

n of the same a
y the gesture
uch etc. do no

wever, having
ws us to defin

is missing is
touch move a

tion of these co
ructed starting
onsequently. O
esents a finger p
ne hand with
of touch points
iterion for dist
ends. A simple
on of a given h
consider that

rwise we do no
.

Inter൑ ݇]	൑ ݇]) ൑ ݇]	൑ ݇] > ݇]	> ݇]
h ground terms t

m

ine the multito
tion of the lef݈ = ,௟ݔ) ,௟ݕ (௟ݖ
o define a pla
the touch em
t. The complete

f we used such
atform, the rede
support with t
res that involv
ge majority of

ously, from the
ad idea to port
platform directl
ly as a proof o

may be used
gnizing gestures
be useful for
e full body gest
ptical device. In

s zooms in
ordingly

application,
definition,

ot have any
a precise

ne precisely
s a precise
and a touch
oncepts, all
from such

One simple
position on
the Kinect
is two). In
tinguishing
e way is to
hand: if it is
the user is
ot consider

raction

to the full-

ouch basic
ft and right
 and ݎ =
ane, which

mulation, as
e definition

h definition
efinition of
the Kinect

ve no more
those used
interaction
multitouch
ly, and the
of concept.
d for those
s in similar

designing
tures with a
n this case,

195

having such kind of homomorphism may reduce the
complexity in supporting different devices.

CONCLUSION AND FUTURE WORK
The spread of gesture interfaces both in mobile devices, in
game settings and more recently in smart environments is
pushing for solving the problem of having a different
programming paradigm, with respect to the single-event
notification for describing gestures. Declarative and
compositional approaches for gesture definition represent a
step further towards such a new model, solving the single-
event granularity problem and providing a separation of
concerns (the temporal sequence definition is separated from
the behaviour), which allows a more understandable and
maintainable code. In addition, we discussed the selection
ambiguity problem, which affects the composition of
gestures that have a common prefix through a choice
operator. The recognition support has different possibilities
for dealing with the uncertainty in the selection while
performing this common prefix. We discussed the different
solutions using GestIT as a sample framework and we
demonstrated that it is more expressive than other libraries in
literature.

In the future, we plan to enhance the framework adding the
support for more platform and devices (e.g. remotes). In
addition we will exploit the declarative approach for
identifying gestures that are not used directly for the
interaction (posturing) but that may be used in order to detect
the user’s emotional status.

REFERENCES
1. Android Developer, Responding to Touch Events.

http://developer.android.com/training/graphics/opengl/t
ouch.html, retrieved 12-10-2012.

2. Apple Inc., Event Handling Guide for iOS.
http://developer.apple.com/library/ios/navigation/,
retrieved 12-10-2012.

3. Colombo, C., Pace, G. Recovery within Long Running
Transaction, ACM Computing Surveys 45 (3), 2013
(accepted paper).

4. Echtler, F., Butz, A. GISpL: Gestures Made Easy. In
Proc. of TEI ’12, pp. 233-240, ACM, (2012).

5. Meyer, A. S., Gesture Recognition.
http://wiki.nuigroup.com/Gesture_Recognition,
retrieved 12-10-2012

6. Garcia-Molina, H., Gawlick, D., Klein, J., Kleissner,
K., Salem, K., Modelling Long-Running Activities as
Nested Sagas. IEEE bulletin of the Technical
Committee on Data Engineering, 14 (1), 1991.

7. Gibbon, D., Gut, U., Hell, B., Looks, K., Thies, A., and
Trippel, T. A computational model of arm gestures in

conversation. Proc. Eurospeech 2003, ISCA (2003),
813–816.

8. Hoste, L., Dumas, B., Signer, B. Mudra: a unified
multimodal interaction framework. In Proc. of ICMI
’11, pp. 97-104, ACM, (2011).

9. Kammer, D.,Wojdziak, J., Keck, M., and Taranko, S.
Towards a formalization of multi-touch gestures. Proc.
ITS 2010, ACM, (2010), 49–58.

10. Khandkar, S. H., Maurer, F. A domain specific
language to define gestures for multi-touch
applications. In Proc. of DCM’10 Workshop, Article
No. 2, ACM, (2010).

11. Kin, K., Hartmann B., DeRose. T., and Agrawala, M.,
Proton: multitouch gestures as regular expressions. In
CHI 2012 (Austin, Texas, U.S. May 2012)., 2885-2894

12. Kin, K., Hartmann, B., DeRose, T., Agrawala, M..
Proton++: a customizable declarative multitouch
framework. In Proc of UIST 2012. ACM, New York,
NY, USA, 477-486.

13. Microsoft, Kinect for Windows SDK,
http://www.microsoft.com/en-us/kinectforwindows/,
retrieved 12-10-2012

14. Brian, P., WiimoteLib,
http://www.brianpeek.com/page/wiimotelib, retrieved
12-10-2012.

15. Paternò, F. Model-based design and evaluation of
interactive applications. Applied Computing, Springer
2000

16. Primesense, NITE, http://www.primesense.com/en/nite,
retrieved 12-10-2012

17. Scholliers, C., Hoste, L., Signer, B., De Meuter, W.,
Midas: a declarative multi-touch interaction framework.
In Proc. of TEI’11, pp. 49–56, ACM, (2011)

18. Schwarz, J., Hudson, S. E., Makoff, J., Wilson, A. D. A
framework for robust and flexible handling of inputs
with uncertainty. In Proc. of UIST 2010, pp. 47-56,
ACM, (2010)

19. Sourceforge, WiiLib,
http://sourceforge.net/projects/wiilib/, retrieved 12-10-
2012

20. Spano, L.D., Cisternino, A., Paternò F., A
Compositional Model for Gesture Definition, In Proc.
of HCSE, LNCS, 7623, pp. 34-52, Springer, (2012)

21. Spano, L.D., Developing Touchless Interfaces with
GestIT, In Proc. of AMI 2012, LNCS, 7683, pp. 433-
438, Springer (2012).

196

