

Study of User Interface Distribution in Multi-Device and
Multi-User Environments with Dynamically Migrating

Engines

ADAPTION DES INTERFACES À L’ENVIRONNEMENT

Date : 11/11/2014

Student : Lifeng TAO

 Page 1

1. Introduction

In the last decade a wide variety of interactive devices have penetrated the mass market,
and people spend more and more time using them. This has made it possible to create many
environments where people spend a long time interacting with various devices sequentially or
in parallel. In order to better exploit such technological offer often people would like to better
use multiple devices while interacting with their applications, for example to dynamically move
components of their interactive applications across different devices with various interaction
resources.

So the authors of this article proposed a framework which can be exploited both in Web and
Java applications in order to obtain more easily application user interfaces (UIs) that can be
dynamically distributed and/or migrated in multi-device and multi-user environments. The
framework also allows dynamically creating multiple simultaneous sessions for applications
used by groups of devices where the UI is distributed. Furthermore, it does not require a fixed
server to manage the distribution. The elements of the UI can be distributed by specifying
specific device(s), group(s) of devices, specific user(s), and groups of users according to roles.

2. Context of use

This framework is currently available for Android and Web-based applications. The authors
plan to provide a version for iOS as well. As for the specific equipment, it can be a mobile phone,
a Tablet PC, a PC, a WebTV etc.

3. Time of use
The technique is used not only at design time but also at runtime. The developer can use it to design

applications which can dynamically distribute UIs into other devices very easily, so it facilitates the

developer's life. The user of the application can focus on the information in which he is interested,

because on his screen, only the appropriate component will be displayed, so it facilitates the user’s life

too.

4. Solution

4.1. Underlying model

The technique presented in this paper use a CIM/PIM model, it can be used to develop
different kinds of applications on different platforms (computer, phone, tablet, WebTV) using
different languages (Java, web languages).

The model is composed of a library and runtime support. The library is used by the
developers to introduce UI distribution in their applications. The runtime support can run on a
dedicated server or in one of the devices participating in the distribution. The Engine side is the
runtime support and is responsible for managing the requests of distribution changes,
processing them, and calculating the new distribution state. For each distributable element of
the UI a JSON document is created and memorized in a document-oriented database (CouchDB)
located in the engine. The engine is dynamical and can be moved. We just need to call the
MoveEngine Command, the current engine will serialize the Distribution State and sends the

 Page 2

database to the requester device. Then an EngineMoved Notification command will be sent by
the current engine, and all others devices have to subscribe to the new engine.

Some basic notion for the model:
Two concepts (Type and Role) to address the devices involved in the distribution:

Type: The type concept is associated with a set of device capabilities.
Role: The role concept is related to the type of tasks carried out by the user using a device in the
distributed application and is independent of the device type.

The Distribution API
ASSIGN Command: used to change the devices that can display or allow manipulation by the
user of a certain element in the UI.
Feedback Command: Used to inform devices of a change in the value of an element
ASSIGN Notification: engine’s ASSIGN Command response
Feedback Notification: engine’s Feedback command response

4.2. An example of using scenario

Figure 1: Sequence Diagram describing examples of subscription requests (accepted and refused) and commands sent by
multiple devices.

 Page 3

In this example, Client D creates a session and subscribes itself. After that client C tries to subscribe

but the request is refused by the engine because it does not provide the necessary credentials. Client A

instead subscribes successfully and then sends an ASSIGN command. The engine calculates the new state

and sends the corresponding notification to the involved devices. This is repeated by client B, which after

a successful subscription sends a Feedback Command.

4.3. A specific example (City guide)

It is an example of a multi-user, multidevice application for outdoor environments. There are two

kinds of roles in this example: the guide and the tourists. The user interface elements are in the Enabled

state for the guide while they can be Disabled or even Invisible for the tourists. The guide can

interactively change the states for the elements shown in the tourist’s user interfaces.

Look at the image1 “Guide UI” and image2 “Tourist UI”, the guide can select the different images to

be shown to tourists. The big image (element with id FeaturedImage) is visible to tourists and enabled to

guide. The right block is enabled to guide and invisible to tourist. The guide can change the

FeaturedImage, thus, a Feedback Command is sent to the Engine containing the URI of the image to be

shown. And on the tablet for the tourist, the selected image will appear.

Figure 2: Guide UI

 Page 4

Figure 3: Tourist UI

5. My opinion
The big advantage is that different roles have different views on different devices. It can be very

helpful for different user to focus on the specific information. Using different devices can make the

applications adapted to the environment. And according to the authors, the impact of the framework in

the application code is limited; the framework has a good performance.

The disadvantage is that the plateform and development language supported by this framework is

very limited. And for now, there isn’t any security ensurance.

